![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnfp1lem2OLD | Unicode version |
Description: Lemma for cantnfp1OLD 8147. (Contributed by Mario Carneiro, 28-May-2015.) Obsolete version of cantnfp1lem2 8119 as of 30-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
cantnfp1OLD.4 | |
cantnfp1OLD.5 | |
cantnfp1OLD.6 | |
cantnfp1OLD.7 | |
cantnfp1OLD.f | |
cantnfp1OLD.8 | |
cantnfp1OLD.o |
Ref | Expression |
---|---|
cantnfp1lem2OLD |
S
, , , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfp1OLD.5 | . . . . . . 7 | |
2 | cantnfp1OLD.6 | . . . . . . . . . 10 | |
3 | iftrue 3947 | . . . . . . . . . . 11 | |
4 | cantnfp1OLD.f | . . . . . . . . . . 11 | |
5 | 3, 4 | fvmptg 5954 | . . . . . . . . . 10 |
6 | 1, 2, 5 | syl2anc 661 | . . . . . . . . 9 |
7 | cantnfp1OLD.8 | . . . . . . . . . 10 | |
8 | cantnfsOLD.2 | . . . . . . . . . . . 12 | |
9 | onelon 4908 | . . . . . . . . . . . 12 | |
10 | 8, 2, 9 | syl2anc 661 | . . . . . . . . . . 11 |
11 | on0eln0 4938 | . . . . . . . . . . 11 | |
12 | 10, 11 | syl 16 | . . . . . . . . . 10 |
13 | 7, 12 | mpbid 210 | . . . . . . . . 9 |
14 | 6, 13 | eqnetrd 2750 | . . . . . . . 8 |
15 | fvex 5881 | . . . . . . . . 9 | |
16 | dif1o 7169 | . . . . . . . . 9 | |
17 | 15, 16 | mpbiran 918 | . . . . . . . 8 |
18 | 14, 17 | sylibr 212 | . . . . . . 7 |
19 | 2 | adantr 465 | . . . . . . . . . 10 |
20 | cantnfp1OLD.4 | . . . . . . . . . . . . 13 | |
21 | cantnfsOLD.1 | . . . . . . . . . . . . . 14 | |
22 | cantnfsOLD.3 | . . . . . . . . . . . . . 14 | |
23 | 21, 8, 22 | cantnfsOLD 8136 | . . . . . . . . . . . . 13 |
24 | 20, 23 | mpbid 210 | . . . . . . . . . . . 12 |
25 | 24 | simpld 459 | . . . . . . . . . . 11 |
26 | 25 | ffvelrnda 6031 | . . . . . . . . . 10 |
27 | ifcl 3983 | . . . . . . . . . 10 | |
28 | 19, 26, 27 | syl2anc 661 | . . . . . . . . 9 |
29 | 28, 4 | fmptd 6055 | . . . . . . . 8 |
30 | ffn 5736 | . . . . . . . 8 | |
31 | elpreima 6007 | . . . . . . . 8 | |
32 | 29, 30, 31 | 3syl 20 | . . . . . . 7 |
33 | 1, 18, 32 | mpbir2and 922 | . . . . . 6 |
34 | n0i 3789 | . . . . . 6 | |
35 | 33, 34 | syl 16 | . . . . 5 |
36 | cnvimass 5362 | . . . . . . . . 9 | |
37 | fdm 5740 | . . . . . . . . . 10 | |
38 | 29, 37 | syl 16 | . . . . . . . . 9 |
39 | 36, 38 | syl5sseq 3551 | . . . . . . . 8 |
40 | 22, 39 | ssexd 4599 | . . . . . . 7 |
41 | cantnfp1OLD.o | . . . . . . . . 9 | |
42 | cantnfp1OLD.7 | . . . . . . . . . 10 | |
43 | 21, 8, 22, 20, 1, 2, 42, 4 | cantnfp1lem1OLD 8144 | . . . . . . . . 9 |
44 | 21, 8, 22, 41, 43 | cantnfclOLD 8137 | . . . . . . . 8 |
45 | 44 | simpld 459 | . . . . . . 7 |
46 | 41 | oien 7984 | . . . . . . 7 |
47 | 40, 45, 46 | syl2anc 661 | . . . . . 6 |
48 | breq1 4455 | . . . . . . 7 | |
49 | ensymb 7583 | . . . . . . . 8 | |
50 | en0 7598 | . . . . . . . 8 | |
51 | 49, 50 | bitri 249 | . . . . . . 7 |
52 | 48, 51 | syl6bb 261 | . . . . . 6 |
53 | 47, 52 | syl5ibcom 220 | . . . . 5 |
54 | 35, 53 | mtod 177 | . . . 4 |
55 | 44 | simprd 463 | . . . . 5 |
56 | nnlim 6713 | . . . . 5 | |
57 | 55, 56 | syl 16 | . . . 4 |
58 | ioran 490 | . . . 4 | |
59 | 54, 57, 58 | sylanbrc 664 | . . 3 |
60 | nnord 6708 | . . . 4 | |
61 | unizlim 4999 | . . . 4 | |
62 | 55, 60, 61 | 3syl 20 | . . 3 |
63 | 59, 62 | mtbird 301 | . 2 |
64 | orduniorsuc 6665 | . . . 4 | |
65 | 55, 60, 64 | 3syl 20 | . . 3 |
66 | 65 | ord 377 | . 2 |
67 | 63, 66 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 if cif 3941 U. cuni 4249
class class class wbr 4452 e. cmpt 4510
cep 4794
We wwe 4842 Ord word 4882 con0 4883 Lim wlim 4884 suc csuc 4885
`' ccnv 5003 dom cdm 5004 " cima 5007
Fn wfn 5588 --> wf 5589 ` cfv 5593
(class class class)co 6296 com 6700
c1o 7142
cen 7533 cfn 7536 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnfp1lem3OLD 8146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |