![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnfres | Unicode version |
Description: The function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | |
cantnfs.a | |
cantnfs.b | |
cantnfrescl.d | |
cantnfrescl.b | |
cantnfrescl.x | |
cantnfrescl.a | |
cantnfrescl.t | |
cantnfres.m |
Ref | Expression |
---|---|
cantnfres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfrescl.d | . . . . . . . . . . . . 13 | |
2 | cantnfrescl.b | . . . . . . . . . . . . 13 | |
3 | cantnfrescl.x | . . . . . . . . . . . . 13 | |
4 | 1, 2, 3 | extmptsuppeq 6943 | . . . . . . . . . . . 12 |
5 | oieq2 7959 | . . . . . . . . . . . 12 | |
6 | 4, 5 | syl 16 | . . . . . . . . . . 11 |
7 | 6 | fveq1d 5873 | . . . . . . . . . 10 |
8 | 7 | 3ad2ant1 1017 | . . . . . . . . 9 |
9 | 8 | oveq2d 6312 | . . . . . . . 8 |
10 | suppssdm 6931 | . . . . . . . . . . . . 13 | |
11 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
12 | 11 | dmmptss 5508 | . . . . . . . . . . . . . 14 |
13 | 12 | a1i 11 | . . . . . . . . . . . . 13 |
14 | 10, 13 | syl5ss 3514 | . . . . . . . . . . . 12 |
15 | 14 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
16 | eqid 2457 | . . . . . . . . . . . . . 14 | |
17 | 16 | oif 7976 | . . . . . . . . . . . . 13 |
18 | 17 | ffvelrni 6030 | . . . . . . . . . . . 12 |
19 | 18 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
20 | 15, 19 | sseldd 3504 | . . . . . . . . . 10 |
21 | fvres 5885 | . . . . . . . . . 10 | |
22 | 20, 21 | syl 16 | . . . . . . . . 9 |
23 | 2 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
24 | 23 | resmptd 5330 | . . . . . . . . . 10 |
25 | 24 | fveq1d 5873 | . . . . . . . . 9 |
26 | 8 | fveq2d 5875 | . . . . . . . . 9 |
27 | 22, 25, 26 | 3eqtr3d 2506 | . . . . . . . 8 |
28 | 9, 27 | oveq12d 6314 | . . . . . . 7 |
29 | 28 | oveq1d 6311 | . . . . . 6 |
30 | 29 | mpt2eq3dva 6361 | . . . . 5 |
31 | 6 | dmeqd 5210 | . . . . . 6 |
32 | eqid 2457 | . . . . . 6 | |
33 | mpt2eq12 6357 | . . . . . 6 | |
34 | 31, 32, 33 | sylancl 662 | . . . . 5 |
35 | 30, 34 | eqtrd 2498 | . . . 4 |
36 | eqid 2457 | . . . 4 | |
37 | seqomeq12 7138 | . . . 4 | |
38 | 35, 36, 37 | sylancl 662 | . . 3 |
39 | 38, 31 | fveq12d 5877 | . 2 |
40 | cantnfs.s | . . 3 | |
41 | cantnfs.a | . . 3 | |
42 | cantnfs.b | . . 3 | |
43 | cantnfres.m | . . 3 | |
44 | eqid 2457 | . . 3 | |
45 | 40, 41, 42, 16, 43, 44 | cantnfval2 8109 | . 2 |
46 | cantnfrescl.t | . . 3 | |
47 | eqid 2457 | . . 3 | |
48 | cantnfrescl.a | . . . . 5 | |
49 | 40, 41, 42, 1, 2, 3, 48, 46 | cantnfrescl 8116 | . . . 4 |
50 | 43, 49 | mpbid 210 | . . 3 |
51 | eqid 2457 | . . 3 | |
52 | 46, 41, 1, 47, 50, 51 | cantnfval2 8109 | . 2 |
53 | 39, 45, 52 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 e. cmpt 4510 cep 4794
con0 4883 dom cdm 5004 |` cres 5006
` cfv 5593 (class class class)co 6296
e. cmpt2 6298 csupp 6918 seqom cseqom 7131 coa 7146
comu 7147
coe 7148
OrdIso coi 7955
ccnf 8099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |