Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalOLD Unicode version

Theorem cantnfvalOLD 8138
 Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnfval 8108 as of 28-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1
cantnfsOLD.2
cantnfsOLD.3
cantnfvalOLD.3
cantnfvalOLD.4
cantnfvalOLD.5
Assertion
Ref Expression
cantnfvalOLD
Distinct variable groups:   ,,   ,,   ,,   S,,   ,,   ,,

Proof of Theorem cantnfvalOLD
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . . 4
2 cantnfsOLD.2 . . . 4
3 cantnfsOLD.3 . . . 4
41, 2, 3cantnffvalOLD 8103 . . 3
54fveq1d 5873 . 2
6 cantnfvalOLD.4 . . . 4
7 cantnfsOLD.1 . . . . 5
81, 2, 3cantnfdmOLD 8104 . . . . 5
97, 8syl5eq 2510 . . . 4
106, 9eleqtrd 2547 . . 3
11 vex 3112 . . . . . . . 8
1211cnvex 6747 . . . . . . 7
13 imaexg 6737 . . . . . . 7
14 eqid 2457 . . . . . . . 8
1514oiexg 7981 . . . . . . 7
1612, 13, 15mp2b 10 . . . . . 6
1716a1i 11 . . . . 5
18 simpr 461 . . . . . . . . . . . . . . . 16
19 simpl 457 . . . . . . . . . . . . . . . . . . 19
2019cnveqd 5183 . . . . . . . . . . . . . . . . . 18
2120imaeq1d 5341 . . . . . . . . . . . . . . . . 17
22 oieq2 7959 . . . . . . . . . . . . . . . . 17
2321, 22syl 16 . . . . . . . . . . . . . . . 16
2418, 23eqtrd 2498 . . . . . . . . . . . . . . 15
25 cantnfvalOLD.3 . . . . . . . . . . . . . . 15
2624, 25syl6eqr 2516 . . . . . . . . . . . . . 14
2726fveq1d 5873 . . . . . . . . . . . . 13
2827oveq2d 6312 . . . . . . . . . . . 12
2919, 27fveq12d 5877 . . . . . . . . . . . 12
3028, 29oveq12d 6314 . . . . . . . . . . 11
3130oveq1d 6311 . . . . . . . . . 10
32313ad2ant1 1017 . . . . . . . . 9
3332mpt2eq3dva 6361 . . . . . . . 8
34 eqid 2457 . . . . . . . 8
35 seqomeq12 7138 . . . . . . . 8
3633, 34, 35sylancl 662 . . . . . . 7
37 cantnfvalOLD.5 . . . . . . 7
3836, 37syl6eqr 2516 . . . . . 6
3926dmeqd 5210 . . . . . 6
4038, 39fveq12d 5877 . . . . 5
4117, 40csbied 3461 . . . 4
42 eqid 2457 . . . 4
43 fvex 5881 . . . 4
4441, 42, 43fvmpt 5956 . . 3
4510, 44syl 16 . 2
465, 45eqtrd 2498 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  {crab 2811   cvv 3109  [_csb 3434  \cdif 3472   c0 3784  e.cmpt 4510   cep 4794   con0 4883  'ccnv 5003  domcdm 5004  "cima 5007  cfv 5593  (class class class)co 6296  e.cmpt2 6298  seqomcseqom 7131   c1o 7142   coa 7146   comu 7147   coe 7148   cmap 7439   cfn 7536  OrdIsocoi 7955   ccnf 8099 This theorem is referenced by:  cantnfval2OLD  8139  cantnfleOLD  8141  cantnflt2OLD  8143  cantnfp1lem3OLD  8146  cantnflem1OLD  8152  cantnfOLD  8155  cnfcom2OLD  8175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6800  df-2nd 6801  df-supp 6919  df-recs 7061  df-rdg 7095  df-seqom 7132  df-1o 7149  df-map 7441  df-fsupp 7850  df-oi 7956  df-cnf 8100
 Copyright terms: Public domain W3C validator