![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnfvalOLD | Unicode version |
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnfval 8108 as of 28-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
cantnfvalOLD.3 | |
cantnfvalOLD.4 | |
cantnfvalOLD.5 |
Ref | Expression |
---|---|
cantnfvalOLD |
S
,, ,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . 4 | |
2 | cantnfsOLD.2 | . . . 4 | |
3 | cantnfsOLD.3 | . . . 4 | |
4 | 1, 2, 3 | cantnffvalOLD 8103 | . . 3 |
5 | 4 | fveq1d 5873 | . 2 |
6 | cantnfvalOLD.4 | . . . 4 | |
7 | cantnfsOLD.1 | . . . . 5 | |
8 | 1, 2, 3 | cantnfdmOLD 8104 | . . . . 5 |
9 | 7, 8 | syl5eq 2510 | . . . 4 |
10 | 6, 9 | eleqtrd 2547 | . . 3 |
11 | vex 3112 | . . . . . . . 8 | |
12 | 11 | cnvex 6747 | . . . . . . 7 |
13 | imaexg 6737 | . . . . . . 7 | |
14 | eqid 2457 | . . . . . . . 8 | |
15 | 14 | oiexg 7981 | . . . . . . 7 |
16 | 12, 13, 15 | mp2b 10 | . . . . . 6 |
17 | 16 | a1i 11 | . . . . 5 |
18 | simpr 461 | . . . . . . . . . . . . . . . 16 | |
19 | simpl 457 | . . . . . . . . . . . . . . . . . . 19 | |
20 | 19 | cnveqd 5183 | . . . . . . . . . . . . . . . . . 18 |
21 | 20 | imaeq1d 5341 | . . . . . . . . . . . . . . . . 17 |
22 | oieq2 7959 | . . . . . . . . . . . . . . . . 17 | |
23 | 21, 22 | syl 16 | . . . . . . . . . . . . . . . 16 |
24 | 18, 23 | eqtrd 2498 | . . . . . . . . . . . . . . 15 |
25 | cantnfvalOLD.3 | . . . . . . . . . . . . . . 15 | |
26 | 24, 25 | syl6eqr 2516 | . . . . . . . . . . . . . 14 |
27 | 26 | fveq1d 5873 | . . . . . . . . . . . . 13 |
28 | 27 | oveq2d 6312 | . . . . . . . . . . . 12 |
29 | 19, 27 | fveq12d 5877 | . . . . . . . . . . . 12 |
30 | 28, 29 | oveq12d 6314 | . . . . . . . . . . 11 |
31 | 30 | oveq1d 6311 | . . . . . . . . . 10 |
32 | 31 | 3ad2ant1 1017 | . . . . . . . . 9 |
33 | 32 | mpt2eq3dva 6361 | . . . . . . . 8 |
34 | eqid 2457 | . . . . . . . 8 | |
35 | seqomeq12 7138 | . . . . . . . 8 | |
36 | 33, 34, 35 | sylancl 662 | . . . . . . 7 |
37 | cantnfvalOLD.5 | . . . . . . 7 | |
38 | 36, 37 | syl6eqr 2516 | . . . . . 6 |
39 | 26 | dmeqd 5210 | . . . . . 6 |
40 | 38, 39 | fveq12d 5877 | . . . . 5 |
41 | 17, 40 | csbied 3461 | . . . 4 |
42 | eqid 2457 | . . . 4 | |
43 | fvex 5881 | . . . 4 | |
44 | 41, 42, 43 | fvmpt 5956 | . . 3 |
45 | 10, 44 | syl 16 | . 2 |
46 | 5, 45 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { crab 2811
cvv 3109
[_ csb 3434 \ cdif 3472 c0 3784 e. cmpt 4510 cep 4794
con0 4883 `' ccnv 5003 dom cdm 5004
" cima 5007 ` cfv 5593 (class class class)co 6296
e. cmpt2 6298 seqom cseqom 7131 c1o 7142
coa 7146
comu 7147
coe 7148
cmap 7439
cfn 7536 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnfval2OLD 8139 cantnfleOLD 8141 cantnflt2OLD 8143 cantnfp1lem3OLD 8146 cantnflem1OLD 8152 cantnfOLD 8155 cnfcom2OLD 8175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-map 7441 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |