![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caofass | Unicode version |
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofcom.3 | |
caofass.4 | |
caofass.5 |
Ref | Expression |
---|---|
caofass |
O
,, ,P
,, ,,, ,,, ,S
,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofass.5 | . . . . . 6 | |
2 | 1 | ralrimivvva 2879 | . . . . 5 |
3 | 2 | adantr 465 | . . . 4 |
4 | caofref.2 | . . . . . 6 | |
5 | 4 | ffvelrnda 6031 | . . . . 5 |
6 | caofcom.3 | . . . . . 6 | |
7 | 6 | ffvelrnda 6031 | . . . . 5 |
8 | caofass.4 | . . . . . 6 | |
9 | 8 | ffvelrnda 6031 | . . . . 5 |
10 | oveq1 6303 | . . . . . . . 8 | |
11 | 10 | oveq1d 6311 | . . . . . . 7 |
12 | oveq1 6303 | . . . . . . 7 | |
13 | 11, 12 | eqeq12d 2479 | . . . . . 6 |
14 | oveq2 6304 | . . . . . . . 8 | |
15 | 14 | oveq1d 6311 | . . . . . . 7 |
16 | oveq1 6303 | . . . . . . . 8 | |
17 | 16 | oveq2d 6312 | . . . . . . 7 |
18 | 15, 17 | eqeq12d 2479 | . . . . . 6 |
19 | oveq2 6304 | . . . . . . 7 | |
20 | oveq2 6304 | . . . . . . . 8 | |
21 | 20 | oveq2d 6312 | . . . . . . 7 |
22 | 19, 21 | eqeq12d 2479 | . . . . . 6 |
23 | 13, 18, 22 | rspc3v 3222 | . . . . 5 |
24 | 5, 7, 9, 23 | syl3anc 1228 | . . . 4 |
25 | 3, 24 | mpd 15 | . . 3 |
26 | 25 | mpteq2dva 4538 | . 2 |
27 | caofref.1 | . . 3 | |
28 | ovex 6324 | . . . 4 | |
29 | 28 | a1i 11 | . . 3 |
30 | 4 | feqmptd 5926 | . . . 4 |
31 | 6 | feqmptd 5926 | . . . 4 |
32 | 27, 5, 7, 30, 31 | offval2 6556 | . . 3 |
33 | 8 | feqmptd 5926 | . . 3 |
34 | 27, 29, 9, 32, 33 | offval2 6556 | . 2 |
35 | ovex 6324 | . . . 4 | |
36 | 35 | a1i 11 | . . 3 |
37 | 27, 7, 9, 31, 33 | offval2 6556 | . . 3 |
38 | 27, 5, 36, 30, 37 | offval2 6556 | . 2 |
39 | 26, 34, 38 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
e. cmpt 4510 --> wf 5589 ` cfv 5593
(class class class)co 6296 oF cof 6538 |
This theorem is referenced by: psrgrp 18051 psrlmod 18054 mndvass 18894 itg2mulc 22154 plydivlem4 22692 dchrabl 23529 expgrowth 31240 lfladdass 34798 lflvsass 34806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-of 6540 |
Copyright terms: Public domain | W3C validator |