![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caoftrn | Unicode version |
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofcom.3 | |
caofass.4 | |
caoftrn.5 |
Ref | Expression |
---|---|
caoftrn |
S
,, ,,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caoftrn.5 | . . . . . 6 | |
2 | 1 | ralrimivvva 2879 | . . . . 5 |
3 | 2 | adantr 465 | . . . 4 |
4 | caofref.2 | . . . . . 6 | |
5 | 4 | ffvelrnda 6031 | . . . . 5 |
6 | caofcom.3 | . . . . . 6 | |
7 | 6 | ffvelrnda 6031 | . . . . 5 |
8 | caofass.4 | . . . . . 6 | |
9 | 8 | ffvelrnda 6031 | . . . . 5 |
10 | breq1 4455 | . . . . . . . 8 | |
11 | 10 | anbi1d 704 | . . . . . . 7 |
12 | breq1 4455 | . . . . . . 7 | |
13 | 11, 12 | imbi12d 320 | . . . . . 6 |
14 | breq2 4456 | . . . . . . . 8 | |
15 | breq1 4455 | . . . . . . . 8 | |
16 | 14, 15 | anbi12d 710 | . . . . . . 7 |
17 | 16 | imbi1d 317 | . . . . . 6 |
18 | breq2 4456 | . . . . . . . 8 | |
19 | 18 | anbi2d 703 | . . . . . . 7 |
20 | breq2 4456 | . . . . . . 7 | |
21 | 19, 20 | imbi12d 320 | . . . . . 6 |
22 | 13, 17, 21 | rspc3v 3222 | . . . . 5 |
23 | 5, 7, 9, 22 | syl3anc 1228 | . . . 4 |
24 | 3, 23 | mpd 15 | . . 3 |
25 | 24 | ralimdva 2865 | . 2 |
26 | ffn 5736 | . . . . . 6 | |
27 | 4, 26 | syl 16 | . . . . 5 |
28 | ffn 5736 | . . . . . 6 | |
29 | 6, 28 | syl 16 | . . . . 5 |
30 | caofref.1 | . . . . 5 | |
31 | inidm 3706 | . . . . 5 | |
32 | eqidd 2458 | . . . . 5 | |
33 | eqidd 2458 | . . . . 5 | |
34 | 27, 29, 30, 30, 31, 32, 33 | ofrfval 6548 | . . . 4 |
35 | ffn 5736 | . . . . . 6 | |
36 | 8, 35 | syl 16 | . . . . 5 |
37 | eqidd 2458 | . . . . 5 | |
38 | 29, 36, 30, 30, 31, 33, 37 | ofrfval 6548 | . . . 4 |
39 | 34, 38 | anbi12d 710 | . . 3 |
40 | r19.26 2984 | . . 3 | |
41 | 39, 40 | syl6bbr 263 | . 2 |
42 | 27, 36, 30, 30, 31, 32, 37 | ofrfval 6548 | . 2 |
43 | 25, 41, 42 | 3imtr4d 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 class class class wbr 4452
Fn wfn 5588 --> wf 5589 ` cfv 5593
oR cofr 6539 |
This theorem is referenced by: gsumbagdiaglem 18027 itg2le 22146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ofr 6541 |
Copyright terms: Public domain | W3C validator |