MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdid Unicode version

Theorem caovdid 6490
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdig.1
caovdid.2
caovdid.3
caovdid.4
Assertion
Ref Expression
caovdid
Distinct variable groups:   , , ,   , , ,   , , ,   , , ,   , , ,   , , ,   , , ,   , , ,   ,S, ,

Proof of Theorem caovdid
StepHypRef Expression
1 id 22 . 2
2 caovdid.2 . 2
3 caovdid.3 . 2
4 caovdid.4 . 2
5 caovdig.1 . . 3
65caovdig 6489 . 2
71, 2, 3, 4, 6syl13anc 1230 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973  =wceq 1395  e.wcel 1818  (class class class)co 6296
This theorem is referenced by:  caovdir2d  6491  caofdi  6576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299
  Copyright terms: Public domain W3C validator