![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caovdig | Unicode version |
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caovdig.1 |
Ref | Expression |
---|---|
caovdig |
S
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdig.1 | . . 3 | |
2 | 1 | ralrimivvva 2879 | . 2 |
3 | oveq1 6303 | . . . 4 | |
4 | oveq1 6303 | . . . . 5 | |
5 | oveq1 6303 | . . . . 5 | |
6 | 4, 5 | oveq12d 6314 | . . . 4 |
7 | 3, 6 | eqeq12d 2479 | . . 3 |
8 | oveq1 6303 | . . . . 5 | |
9 | 8 | oveq2d 6312 | . . . 4 |
10 | oveq2 6304 | . . . . 5 | |
11 | 10 | oveq1d 6311 | . . . 4 |
12 | 9, 11 | eqeq12d 2479 | . . 3 |
13 | oveq2 6304 | . . . . 5 | |
14 | 13 | oveq2d 6312 | . . . 4 |
15 | oveq2 6304 | . . . . 5 | |
16 | 15 | oveq2d 6312 | . . . 4 |
17 | 14, 16 | eqeq12d 2479 | . . 3 |
18 | 7, 12, 17 | rspc3v 3222 | . 2 |
19 | 2, 18 | mpan9 469 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 (class class class)co 6296 |
This theorem is referenced by: caovdid 6490 caovdi 6494 srgi 17163 ringi 17211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |