![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caovdir2d | Unicode version |
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovdir2d.1 | |
caovdir2d.2 | |
caovdir2d.3 | |
caovdir2d.4 | |
caovdir2d.cl | |
caovdir2d.com |
Ref | Expression |
---|---|
caovdir2d |
S
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdir2d.1 | . . 3 | |
2 | caovdir2d.4 | . . 3 | |
3 | caovdir2d.2 | . . 3 | |
4 | caovdir2d.3 | . . 3 | |
5 | 1, 2, 3, 4 | caovdid 6490 | . 2 |
6 | caovdir2d.com | . . 3 | |
7 | caovdir2d.cl | . . . 4 | |
8 | 7, 3, 4 | caovcld 6468 | . . 3 |
9 | 6, 8, 2 | caovcomd 6471 | . 2 |
10 | 6, 3, 2 | caovcomd 6471 | . . 3 |
11 | 6, 4, 2 | caovcomd 6471 | . . 3 |
12 | 10, 11 | oveq12d 6314 | . 2 |
13 | 5, 9, 12 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
(class class class)co 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |