![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cardaleph | Unicode version |
Description: Given any transfinite cardinal number , there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
cardaleph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 8346 | . . . . . . . . 9 | |
2 | eleq1 2529 | . . . . . . . . 9 | |
3 | 1, 2 | mpbii 211 | . . . . . . . 8 |
4 | alephle 8490 | . . . . . . . . 9 | |
5 | fveq2 5871 | . . . . . . . . . . 11 | |
6 | 5 | sseq2d 3531 | . . . . . . . . . 10 |
7 | 6 | rspcev 3210 | . . . . . . . . 9 |
8 | 4, 7 | mpdan 668 | . . . . . . . 8 |
9 | nfcv 2619 | . . . . . . . . . 10 | |
10 | nfcv 2619 | . . . . . . . . . . 11 | |
11 | nfrab1 3038 | . . . . . . . . . . . 12 | |
12 | 11 | nfint 4296 | . . . . . . . . . . 11 |
13 | 10, 12 | nffv 5878 | . . . . . . . . . 10 |
14 | 9, 13 | nfss 3496 | . . . . . . . . 9 |
15 | fveq2 5871 | . . . . . . . . . 10 | |
16 | 15 | sseq2d 3531 | . . . . . . . . 9 |
17 | 14, 16 | onminsb 6634 | . . . . . . . 8 |
18 | 3, 8, 17 | 3syl 20 | . . . . . . 7 |
19 | 18 | a1i 11 | . . . . . 6 |
20 | fveq2 5871 | . . . . . . . . 9 | |
21 | aleph0 8468 | . . . . . . . . 9 | |
22 | 20, 21 | syl6eq 2514 | . . . . . . . 8 |
23 | 22 | sseq1d 3530 | . . . . . . 7 |
24 | 23 | biimprd 223 | . . . . . 6 |
25 | 19, 24 | anim12d 563 | . . . . 5 |
26 | eqss 3518 | . . . . 5 | |
27 | 25, 26 | syl6ibr 227 | . . . 4 |
28 | 27 | com12 31 | . . 3 |
29 | 28 | ancoms 453 | . 2 |
30 | vex 3112 | . . . . . . . . . . . 12 | |
31 | 30 | sucid 4962 | . . . . . . . . . . 11 |
32 | eleq2 2530 | . . . . . . . . . . 11 | |
33 | 31, 32 | mpbiri 233 | . . . . . . . . . 10 |
34 | fveq2 5871 | . . . . . . . . . . . 12 | |
35 | 34 | sseq2d 3531 | . . . . . . . . . . 11 |
36 | 35 | onnminsb 6639 | . . . . . . . . . 10 |
37 | 33, 36 | syl5 32 | . . . . . . . . 9 |
38 | 37 | imp 429 | . . . . . . . 8 |
39 | 38 | adantl 466 | . . . . . . 7 |
40 | fveq2 5871 | . . . . . . . . . . 11 | |
41 | alephsuc 8470 | . . . . . . . . . . 11 | |
42 | 40, 41 | sylan9eqr 2520 | . . . . . . . . . 10 |
43 | 42 | eleq2d 2527 | . . . . . . . . 9 |
44 | 43 | biimpd 207 | . . . . . . . 8 |
45 | elharval 8010 | . . . . . . . . . 10 | |
46 | 45 | simprbi 464 | . . . . . . . . 9 |
47 | onenon 8351 | . . . . . . . . . . . 12 | |
48 | 3, 47 | syl 16 | . . . . . . . . . . 11 |
49 | alephon 8471 | . . . . . . . . . . . 12 | |
50 | onenon 8351 | . . . . . . . . . . . 12 | |
51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 |
52 | carddom2 8379 | . . . . . . . . . . 11 | |
53 | 48, 51, 52 | sylancl 662 | . . . . . . . . . 10 |
54 | sseq1 3524 | . . . . . . . . . . 11 | |
55 | alephcard 8472 | . . . . . . . . . . . 12 | |
56 | 55 | sseq2i 3528 | . . . . . . . . . . 11 |
57 | 54, 56 | syl6bb 261 | . . . . . . . . . 10 |
58 | 53, 57 | bitr3d 255 | . . . . . . . . 9 |
59 | 46, 58 | syl5ib 219 | . . . . . . . 8 |
60 | 44, 59 | sylan9r 658 | . . . . . . 7 |
61 | 39, 60 | mtod 177 | . . . . . 6 |
62 | 61 | rexlimdvaa 2950 | . . . . 5 |
63 | onintrab2 6637 | . . . . . . . . . . . . . 14 | |
64 | 8, 63 | sylib 196 | . . . . . . . . . . . . 13 |
65 | onelon 4908 | . . . . . . . . . . . . 13 | |
66 | 64, 65 | sylan 471 | . . . . . . . . . . . 12 |
67 | 36 | adantld 467 | . . . . . . . . . . . 12 |
68 | 66, 67 | mpcom 36 | . . . . . . . . . . 11 |
69 | 49 | onelssi 4991 | . . . . . . . . . . 11 |
70 | 68, 69 | nsyl 121 | . . . . . . . . . 10 |
71 | 70 | nrexdv 2913 | . . . . . . . . 9 |
72 | 71 | adantr 465 | . . . . . . . 8 |
73 | alephlim 8469 | . . . . . . . . . . 11 | |
74 | 64, 73 | sylan 471 | . . . . . . . . . 10 |
75 | 74 | eleq2d 2527 | . . . . . . . . 9 |
76 | eliun 4335 | . . . . . . . . 9 | |
77 | 75, 76 | syl6bb 261 | . . . . . . . 8 |
78 | 72, 77 | mtbird 301 | . . . . . . 7 |
79 | 78 | ex 434 | . . . . . 6 |
80 | 3, 79 | syl 16 | . . . . 5 |
81 | 62, 80 | jaod 380 | . . . 4 |
82 | 8, 17 | syl 16 | . . . . . 6 |
83 | alephon 8471 | . . . . . . 7 | |
84 | onsseleq 4924 | . . . . . . 7 | |
85 | 83, 84 | mpan2 671 | . . . . . 6 |
86 | 82, 85 | mpbid 210 | . . . . 5 |
87 | 86 | ord 377 | . . . 4 |
88 | 3, 81, 87 | sylsyld 56 | . . 3 |
89 | 88 | adantl 466 | . 2 |
90 | eloni 4893 | . . . . 5 | |
91 | ordzsl 6680 | . . . . . 6 | |
92 | 3orass 976 | . . . . . 6 | |
93 | 91, 92 | bitri 249 | . . . . 5 |
94 | 90, 93 | sylib 196 | . . . 4 |
95 | 3, 64, 94 | 3syl 20 | . . 3 |
96 | 95 | adantl 466 | . 2 |
97 | 29, 89, 96 | mpjaod 381 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
\/ w3o 972 = wceq 1395 e. wcel 1818
E. wrex 2808 { crab 2811 C_ wss 3475
c0 3784 |^| cint 4286 U_ ciun 4330
class class class wbr 4452 Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 ` cfv 5593 com 6700
cdom 7534 char 8003 ccrd 8337 cale 8338 |
This theorem is referenced by: cardalephex 8492 tskcard 9180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-har 8005 df-card 8341 df-aleph 8342 |
Copyright terms: Public domain | W3C validator |