![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cardcf | Unicode version |
Description: Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cardcf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfval 8648 | . . . 4 | |
2 | vex 3112 | . . . . . . . . 9 | |
3 | eqeq1 2461 | . . . . . . . . . . 11 | |
4 | 3 | anbi1d 704 | . . . . . . . . . 10 |
5 | 4 | exbidv 1714 | . . . . . . . . 9 |
6 | 2, 5 | elab 3246 | . . . . . . . 8 |
7 | fveq2 5871 | . . . . . . . . . . . 12 | |
8 | cardidm 8361 | . . . . . . . . . . . 12 | |
9 | 7, 8 | syl6eq 2514 | . . . . . . . . . . 11 |
10 | eqeq2 2472 | . . . . . . . . . . 11 | |
11 | 9, 10 | mpbird 232 | . . . . . . . . . 10 |
12 | 11 | adantr 465 | . . . . . . . . 9 |
13 | 12 | exlimiv 1722 | . . . . . . . 8 |
14 | 6, 13 | sylbi 195 | . . . . . . 7 |
15 | cardon 8346 | . . . . . . 7 | |
16 | 14, 15 | syl6eqelr 2554 | . . . . . 6 |
17 | 16 | ssriv 3507 | . . . . 5 |
18 | fvex 5881 | . . . . . . 7 | |
19 | 1, 18 | syl6eqelr 2554 | . . . . . 6 |
20 | intex 4608 | . . . . . 6 | |
21 | 19, 20 | sylibr 212 | . . . . 5 |
22 | onint 6630 | . . . . 5 | |
23 | 17, 21, 22 | sylancr 663 | . . . 4 |
24 | 1, 23 | eqeltrd 2545 | . . 3 |
25 | fveq2 5871 | . . . . 5 | |
26 | id 22 | . . . . 5 | |
27 | 25, 26 | eqeq12d 2479 | . . . 4 |
28 | 27, 14 | vtoclga 3173 | . . 3 |
29 | 24, 28 | syl 16 | . 2 |
30 | cff 8649 | . . . . . 6 | |
31 | 30 | fdmi 5741 | . . . . 5 |
32 | 31 | eleq2i 2535 | . . . 4 |
33 | ndmfv 5895 | . . . 4 | |
34 | 32, 33 | sylnbir 307 | . . 3 |
35 | card0 8360 | . . . 4 | |
36 | fveq2 5871 | . . . 4 | |
37 | id 22 | . . . 4 | |
38 | 35, 36, 37 | 3eqtr4a 2524 | . . 3 |
39 | 34, 38 | syl 16 | . 2 |
40 | 29, 39 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 =/= wne 2652 A. wral 2807
E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 |^| cint 4286 con0 4883 dom cdm 5004 ` cfv 5593
ccrd 8337 ccf 8339 |
This theorem is referenced by: cfon 8656 winacard 9091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-card 8341 df-cf 8343 |
Copyright terms: Public domain | W3C validator |