![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > carddomi2 | Unicode version |
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 8950, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
carddomi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardnueq0 8366 | . . . . . 6 | |
2 | 1 | adantr 465 | . . . . 5 |
3 | 2 | biimpa 484 | . . . 4 |
4 | 0domg 7664 | . . . . 5 | |
5 | 4 | ad2antlr 726 | . . . 4 |
6 | 3, 5 | eqbrtrd 4472 | . . 3 |
7 | 6 | a1d 25 | . 2 |
8 | fvex 5881 | . . . . 5 | |
9 | simprr 757 | . . . . 5 | |
10 | ssdomg 7581 | . . . . 5 | |
11 | 8, 9, 10 | mpsyl 63 | . . . 4 |
12 | cardid2 8355 | . . . . . 6 | |
13 | 12 | ad2antrr 725 | . . . . 5 |
14 | simprl 756 | . . . . . . 7 | |
15 | ssn0 3818 | . . . . . . 7 | |
16 | 9, 14, 15 | syl2anc 661 | . . . . . 6 |
17 | ndmfv 5895 | . . . . . . 7 | |
18 | 17 | necon1ai 2688 | . . . . . 6 |
19 | cardid2 8355 | . . . . . 6 | |
20 | 16, 18, 19 | 3syl 20 | . . . . 5 |
21 | domen1 7679 | . . . . . 6 | |
22 | domen2 7680 | . . . . . 6 | |
23 | 21, 22 | sylan9bb 699 | . . . . 5 |
24 | 13, 20, 23 | syl2anc 661 | . . . 4 |
25 | 11, 24 | mpbid 210 | . . 3 |
26 | 25 | expr 615 | . 2 |
27 | 7, 26 | pm2.61dane 2775 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 cvv 3109
C_ wss 3475 c0 3784 class class class wbr 4452
dom cdm 5004 ` cfv 5593 cen 7533 cdom 7534 ccrd 8337 |
This theorem is referenced by: carddom2 8379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-card 8341 |
Copyright terms: Public domain | W3C validator |