![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cardf2 | Unicode version |
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
cardf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-card 8341 | . . . 4 | |
2 | 1 | funmpt2 5630 | . . 3 |
3 | rabab 3127 | . . . 4 | |
4 | 1 | dmmpt 5507 | . . . 4 |
5 | intexrab 4611 | . . . . 5 | |
6 | 5 | abbii 2591 | . . . 4 |
7 | 3, 4, 6 | 3eqtr4i 2496 | . . 3 |
8 | df-fn 5596 | . . 3 | |
9 | 2, 7, 8 | mpbir2an 920 | . 2 |
10 | simpr 461 | . . . . . . . . 9 | |
11 | vex 3112 | . . . . . . . . 9 | |
12 | 10, 11 | syl6eqelr 2554 | . . . . . . . 8 |
13 | intex 4608 | . . . . . . . 8 | |
14 | 12, 13 | sylibr 212 | . . . . . . 7 |
15 | rabn0 3805 | . . . . . . 7 | |
16 | 14, 15 | sylib 196 | . . . . . 6 |
17 | vex 3112 | . . . . . . 7 | |
18 | breq2 4456 | . . . . . . . 8 | |
19 | 18 | rexbidv 2968 | . . . . . . 7 |
20 | 17, 19 | elab 3246 | . . . . . 6 |
21 | 16, 20 | sylibr 212 | . . . . 5 |
22 | ssrab2 3584 | . . . . . . 7 | |
23 | oninton 6635 | . . . . . . 7 | |
24 | 22, 14, 23 | sylancr 663 | . . . . . 6 |
25 | 10, 24 | eqeltrd 2545 | . . . . 5 |
26 | 21, 25 | jca 532 | . . . 4 |
27 | 26 | ssopab2i 4780 | . . 3 |
28 | df-card 8341 | . . . 4 | |
29 | df-mpt 4512 | . . . 4 | |
30 | 28, 29 | eqtri 2486 | . . 3 |
31 | df-xp 5010 | . . 3 | |
32 | 27, 30, 31 | 3sstr4i 3542 | . 2 |
33 | dff2 6043 | . 2 | |
34 | 9, 32, 33 | mpbir2an 920 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 =/= wne 2652
E. wrex 2808 { crab 2811 cvv 3109
C_ wss 3475 c0 3784 |^| cint 4286 class class class wbr 4452
{ copab 4509 e. cmpt 4510
con0 4883 X. cxp 5002 dom cdm 5004
Fun wfun 5587
Fn wfn 5588 --> wf 5589 cen 7533 ccrd 8337 |
This theorem is referenced by: cardon 8346 isnum2 8347 cardf 8946 smobeth 8982 hashkf 12407 hashgval 12408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-card 8341 |
Copyright terms: Public domain | W3C validator |