![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cardinfima | Unicode version |
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
cardinfima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | isinfcard 8494 | . . . . . . . . . . . . 13 | |
3 | 2 | bicomi 202 | . . . . . . . . . . . 12 |
4 | 3 | simplbi 460 | . . . . . . . . . . 11 |
5 | ffn 5736 | . . . . . . . . . . . 12 | |
6 | fnfvelrn 6028 | . . . . . . . . . . . . . . . 16 | |
7 | 6 | ex 434 | . . . . . . . . . . . . . . 15 |
8 | fnima 5704 | . . . . . . . . . . . . . . . 16 | |
9 | 8 | eleq2d 2527 | . . . . . . . . . . . . . . 15 |
10 | 7, 9 | sylibrd 234 | . . . . . . . . . . . . . 14 |
11 | elssuni 4279 | . . . . . . . . . . . . . 14 | |
12 | 10, 11 | syl6 33 | . . . . . . . . . . . . 13 |
13 | 12 | imp 429 | . . . . . . . . . . . 12 |
14 | 5, 13 | sylan 471 | . . . . . . . . . . 11 |
15 | 4, 14 | sylan9ssr 3517 | . . . . . . . . . 10 |
16 | 15 | anasss 647 | . . . . . . . . 9 |
17 | 16 | a1i 11 | . . . . . . . 8 |
18 | carduniima 8498 | . . . . . . . . . 10 | |
19 | iscard3 8495 | . . . . . . . . . 10 | |
20 | 18, 19 | syl6ibr 227 | . . . . . . . . 9 |
21 | 20 | adantrd 468 | . . . . . . . 8 |
22 | 17, 21 | jcad 533 | . . . . . . 7 |
23 | isinfcard 8494 | . . . . . . 7 | |
24 | 22, 23 | syl6ib 226 | . . . . . 6 |
25 | 24 | exp4d 609 | . . . . 5 |
26 | 25 | imp 429 | . . . 4 |
27 | 26 | rexlimdv 2947 | . . 3 |
28 | 27 | expimpd 603 | . 2 |
29 | 1, 28 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 E. wrex 2808
cvv 3109
u. cun 3473 C_ wss 3475 U. cuni 4249
ran crn 5005 " cima 5007 Fn wfn 5588
--> wf 5589 ` cfv 5593 com 6700
ccrd 8337 cale 8338 |
This theorem is referenced by: alephfplem4 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-har 8005 df-card 8341 df-aleph 8342 |
Copyright terms: Public domain | W3C validator |