![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caucvg | Unicode version |
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
caucvg.1 | |
caucvg.2 | |
caucvg.3 | |
caucvg.4 |
Ref | Expression |
---|---|
caucvg |
M
,, ,,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . . 6 | |
2 | 1 | cbvmptv 4543 | . . . . 5 |
3 | caucvg.1 | . . . . . . . . . 10 | |
4 | uzssz 11129 | . . . . . . . . . 10 | |
5 | 3, 4 | eqsstri 3533 | . . . . . . . . 9 |
6 | zssre 10896 | . . . . . . . . 9 | |
7 | 5, 6 | sstri 3512 | . . . . . . . 8 |
8 | 7 | a1i 11 | . . . . . . 7 |
9 | caucvg.2 | . . . . . . . 8 | |
10 | 2 | eqcomi 2470 | . . . . . . . 8 |
11 | 9, 10 | fmptd 6055 | . . . . . . 7 |
12 | 1rp 11253 | . . . . . . . . . . 11 | |
13 | 12 | ne0ii 3791 | . . . . . . . . . 10 |
14 | caucvg.3 | . . . . . . . . . 10 | |
15 | r19.2z 3918 | . . . . . . . . . 10 | |
16 | 13, 14, 15 | sylancr 663 | . . . . . . . . 9 |
17 | eluzel2 11115 | . . . . . . . . . . . . 13 | |
18 | 17, 3 | eleq2s 2565 | . . . . . . . . . . . 12 |
19 | 18 | a1d 25 | . . . . . . . . . . 11 |
20 | 19 | rexlimiv 2943 | . . . . . . . . . 10 |
21 | 20 | rexlimivw 2946 | . . . . . . . . 9 |
22 | 16, 21 | syl 16 | . . . . . . . 8 |
23 | 3 | uzsup 11990 | . . . . . . . 8 |
24 | 22, 23 | syl 16 | . . . . . . 7 |
25 | 5 | sseli 3499 | . . . . . . . . . . . . . . . 16 |
26 | 5 | sseli 3499 | . . . . . . . . . . . . . . . 16 |
27 | eluz 11123 | . . . . . . . . . . . . . . . 16 | |
28 | 25, 26, 27 | syl2an 477 | . . . . . . . . . . . . . . 15 |
29 | 28 | biimprd 223 | . . . . . . . . . . . . . 14 |
30 | fveq2 5871 | . . . . . . . . . . . . . . . . . . 19 | |
31 | eqid 2457 | . . . . . . . . . . . . . . . . . . 19 | |
32 | fvex 5881 | . . . . . . . . . . . . . . . . . . 19 | |
33 | 30, 31, 32 | fvmpt3i 5960 | . . . . . . . . . . . . . . . . . 18 |
34 | fveq2 5871 | . . . . . . . . . . . . . . . . . . 19 | |
35 | 34, 31, 32 | fvmpt3i 5960 | . . . . . . . . . . . . . . . . . 18 |
36 | 33, 35 | oveqan12rd 6316 | . . . . . . . . . . . . . . . . 17 |
37 | 36 | fveq2d 5875 | . . . . . . . . . . . . . . . 16 |
38 | 37 | breq1d 4462 | . . . . . . . . . . . . . . 15 |
39 | 38 | biimprd 223 | . . . . . . . . . . . . . 14 |
40 | 29, 39 | imim12d 74 | . . . . . . . . . . . . 13 |
41 | 40 | ex 434 | . . . . . . . . . . . 12 |
42 | 41 | com23 78 | . . . . . . . . . . 11 |
43 | 42 | ralimdv2 2864 | . . . . . . . . . 10 |
44 | 43 | reximia 2923 | . . . . . . . . 9 |
45 | 44 | ralimi 2850 | . . . . . . . 8 |
46 | 14, 45 | syl 16 | . . . . . . 7 |
47 | 8, 11, 24, 46 | caucvgr 13498 | . . . . . 6 |
48 | 11, 24 | rlimdm 13374 | . . . . . 6 |
49 | 47, 48 | mpbid 210 | . . . . 5 |
50 | 2, 49 | syl5eqbr 4485 | . . . 4 |
51 | eqid 2457 | . . . . . 6 | |
52 | 9, 51 | fmptd 6055 | . . . . 5 |
53 | 3, 22, 52 | rlimclim 13369 | . . . 4 |
54 | 50, 53 | mpbid 210 | . . 3 |
55 | caucvg.4 | . . . 4 | |
56 | 3, 51 | climmpt 13394 | . . . 4 |
57 | 22, 55, 56 | syl2anc 661 | . . 3 |
58 | 54, 57 | mpbird 232 | . 2 |
59 | climrel 13315 | . . 3 | |
60 | 59 | releldmi 5244 | . 2 |
61 | 58, 60 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
C_ wss 3475 c0 3784 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 ` cfv 5593
(class class class)co 6296 sup csup 7920
cc 9511 cr 9512 1 c1 9514 cpnf 9646 cxr 9648
clt 9649 cle 9650 cmin 9828 cz 10889 cuz 11110
crp 11249
cabs 13067 cli 13307 crli 13308 |
This theorem is referenced by: caucvgb 13502 cvgcmpce 13632 ulmcau 22790 dchrisumlem3 23676 rrncmslem 30328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fl 11929 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |