![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > caucvgb | Unicode version |
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
caucvgb.1 |
Ref | Expression |
---|---|
caucvgb |
M
,, ,,, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm2g 5204 | . . . 4 | |
2 | 1 | ibi 241 | . . 3 |
3 | df-br 4453 | . . . . 5 | |
4 | caucvgb.1 | . . . . . . . 8 | |
5 | simpll 753 | . . . . . . . 8 | |
6 | 1rp 11253 | . . . . . . . . 9 | |
7 | 6 | a1i 11 | . . . . . . . 8 |
8 | eqidd 2458 | . . . . . . . 8 | |
9 | simpr 461 | . . . . . . . 8 | |
10 | 4, 5, 7, 8, 9 | climi 13333 | . . . . . . 7 |
11 | simpl 457 | . . . . . . . . 9 | |
12 | 11 | ralimi 2850 | . . . . . . . 8 |
13 | 12 | reximi 2925 | . . . . . . 7 |
14 | 10, 13 | syl 16 | . . . . . 6 |
15 | 14 | ex 434 | . . . . 5 |
16 | 3, 15 | syl5bir 218 | . . . 4 |
17 | 16 | exlimdv 1724 | . . 3 |
18 | 2, 17 | syl5 32 | . 2 |
19 | simpl 457 | . . . . . . 7 | |
20 | 19 | ralimi 2850 | . . . . . 6 |
21 | 20 | reximi 2925 | . . . . 5 |
22 | 21 | ralimi 2850 | . . . 4 |
23 | fveq2 5871 | . . . . . . . 8 | |
24 | 23 | raleqdv 3060 | . . . . . . 7 |
25 | 24 | cbvrexv 3085 | . . . . . 6 |
26 | 25 | a1i 11 | . . . . 5 |
27 | 26 | rspcv 3206 | . . . 4 |
28 | 6, 22, 27 | mpsyl 63 | . . 3 |
29 | 28 | a1i 11 | . 2 |
30 | eluzelz 11119 | . . . . . . . . . 10 | |
31 | 30, 4 | eleq2s 2565 | . . . . . . . . 9 |
32 | eqid 2457 | . . . . . . . . . 10 | |
33 | 32 | climcau 13493 | . . . . . . . . 9 |
34 | 31, 33 | sylan 471 | . . . . . . . 8 |
35 | 32 | r19.29uz 13183 | . . . . . . . . . 10 |
36 | 35 | ex 434 | . . . . . . . . 9 |
37 | 36 | ralimdv 2867 | . . . . . . . 8 |
38 | 34, 37 | mpan9 469 | . . . . . . 7 |
39 | 38 | an32s 804 | . . . . . 6 |
40 | 39 | adantll 713 | . . . . 5 |
41 | simplrr 762 | . . . . . . . 8 | |
42 | fveq2 5871 | . . . . . . . . . 10 | |
43 | 42 | eleq1d 2526 | . . . . . . . . 9 |
44 | 43 | rspccva 3209 | . . . . . . . 8 |
45 | 41, 44 | sylan 471 | . . . . . . 7 |
46 | simpr 461 | . . . . . . . . . . . . 13 | |
47 | 46 | ralimi 2850 | . . . . . . . . . . . 12 |
48 | 42 | oveq1d 6311 | . . . . . . . . . . . . . . 15 |
49 | 48 | fveq2d 5875 | . . . . . . . . . . . . . 14 |
50 | 49 | breq1d 4462 | . . . . . . . . . . . . 13 |
51 | 50 | cbvralv 3084 | . . . . . . . . . . . 12 |
52 | 47, 51 | sylib 196 | . . . . . . . . . . 11 |
53 | 52 | reximi 2925 | . . . . . . . . . 10 |
54 | 53 | ralimi 2850 | . . . . . . . . 9 |
55 | 54 | adantl 466 | . . . . . . . 8 |
56 | fveq2 5871 | . . . . . . . . . . . 12 | |
57 | fveq2 5871 | . . . . . . . . . . . . . . 15 | |
58 | 57 | oveq2d 6312 | . . . . . . . . . . . . . 14 |
59 | 58 | fveq2d 5875 | . . . . . . . . . . . . 13 |
60 | 59 | breq1d 4462 | . . . . . . . . . . . 12 |
61 | 56, 60 | raleqbidv 3068 | . . . . . . . . . . 11 |
62 | 61 | cbvrexv 3085 | . . . . . . . . . 10 |
63 | breq2 4456 | . . . . . . . . . . 11 | |
64 | 63 | rexralbidv 2976 | . . . . . . . . . 10 |
65 | 62, 64 | syl5bb 257 | . . . . . . . . 9 |
66 | 65 | cbvralv 3084 | . . . . . . . 8 |
67 | 55, 66 | sylib 196 | . . . . . . 7 |
68 | simpll 753 | . . . . . . 7 | |
69 | 32, 45, 67, 68 | caucvg 13501 | . . . . . 6 |
70 | 69 | adantlll 717 | . . . . 5 |
71 | 40, 70 | impbida 832 | . . . 4 |
72 | 4, 32 | cau4 13189 | . . . . 5 |
73 | 72 | ad2antrl 727 | . . . 4 |
74 | 71, 73 | bitr4d 256 | . . 3 |
75 | 74 | rexlimdvaa 2950 | . 2 |
76 | 18, 29, 75 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
<. cop 4035 class class class wbr 4452
dom cdm 5004 ` cfv 5593 (class class class)co 6296
cc 9511 1 c1 9514 clt 9649 cmin 9828 cz 10889 cuz 11110
crp 11249
cabs 13067 cli 13307 |
This theorem is referenced by: serf0 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fl 11929 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |