Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3h Unicode version

Theorem cbv3h 2016
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 8-Jun-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
Hypotheses
Ref Expression
cbv3h.1
cbv3h.2
cbv3h.3
Assertion
Ref Expression
cbv3h

Proof of Theorem cbv3h
StepHypRef Expression
1 cbv3h.1 . . 3
21nfi 1623 . 2
3 cbv3h.2 . . 3
43nfi 1623 . 2
5 cbv3h.3 . 2
62, 4, 5cbv3 2015 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  A.wal 1393 This theorem is referenced by:  cleqhOLD  2573 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator