Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvabOLD Unicode version

Theorem cbvabOLD 2599
 Description: Obsolete proof of cbvab 2598 as of 16-Nov-2019. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvab.1
cbvab.2
cbvab.3
Assertion
Ref Expression
cbvabOLD

Proof of Theorem cbvabOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5
21nfsb 2184 . . . 4
3 cbvab.1 . . . . . 6
4 cbvab.3 . . . . . . . 8
54equcoms 1795 . . . . . . 7
65bicomd 201 . . . . . 6
73, 6sbie 2149 . . . . 5
8 sbequ 2117 . . . . 5
97, 8syl5bbr 259 . . . 4
102, 9sbie 2149 . . 3
11 df-clab 2443 . . 3
12 df-clab 2443 . . 3
1310, 11, 123bitr4i 277 . 2
1413eqriv 2453 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  F/wnf 1616  [wsb 1739  e.wcel 1818  {cab 2442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449
 Copyright terms: Public domain W3C validator