Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval2v Unicode version

Theorem cbval2v 2030
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
Hypothesis
Ref Expression
cbval2v.1
Assertion
Ref Expression
cbval2v
Distinct variable groups:   ,,   ,,   ,   ,

Proof of Theorem cbval2v
StepHypRef Expression
1 nfv 1707 . 2
2 nfv 1707 . 2
3 nfv 1707 . 2
4 nfv 1707 . 2
5 cbval2v.1 . 2
61, 2, 3, 4, 5cbval2 2027 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393 This theorem is referenced by:  seqf1o  12148  brfi1uzind  12532  mbfresfi  30061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator