MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaldva Unicode version

Theorem cbvaldva 2032
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1
Assertion
Ref Expression
cbvaldva
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem cbvaldva
StepHypRef Expression
1 nfv 1707 . 2
2 nfvd 1708 . 2
3 cbvaldva.1 . . 3
43ex 434 . 2
51, 2, 4cbvald 2025 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393
This theorem is referenced by:  cbvraldva2  3088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator