![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvaldva | Unicode version |
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvaldva.1 |
Ref | Expression |
---|---|
cbvaldva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . 2 | |
2 | nfvd 1708 | . 2 | |
3 | cbvaldva.1 | . . 3 | |
4 | 3 | ex 434 | . 2 |
5 | 1, 2, 4 | cbvald 2025 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 |
This theorem is referenced by: cbvraldva2 3088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |