MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaliw Unicode version

Theorem cbvaliw 1788
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.)
Hypotheses
Ref Expression
cbvaliw.1
cbvaliw.2
cbvaliw.3
Assertion
Ref Expression
cbvaliw
Distinct variable group:   ,

Proof of Theorem cbvaliw
StepHypRef Expression
1 cbvaliw.1 . 2
2 cbvaliw.2 . . 3
3 cbvaliw.3 . . 3
42, 3spimw 1783 . 2
51, 4alrimih 1642 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  cbvalw  1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator