Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv Unicode version

Theorem cbvalv 2023
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1
Assertion
Ref Expression
cbvalv
Distinct variable groups:   ,   ,

Proof of Theorem cbvalv
StepHypRef Expression
1 nfv 1707 . 2
2 nfv 1707 . 2
3 cbvalv.1 . 2
41, 2, 3cbval 2021 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393 This theorem is referenced by:  axc11n-16  2268  nfcjust  2606  cdeqal1  3318  zfpow  4631  tfisi  6693  pssnn  7758  findcard  7779  findcard3  7783  zfinf  8077  aceq0  8520  kmlem1  8551  kmlem13  8563  fin23lem32  8745  fin23lem41  8753  zfac  8861  zfcndpow  9015  zfcndinf  9017  zfcndac  9018  axgroth4  9231  ramcl  14547  mreexexlemd  15041  relexpindlem  29062  dfon2lem6  29220  dfon2lem7  29221  dfon2  29224  dfac11  31008  bnj1112  34039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator