MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalvw Unicode version

Theorem cbvalvw 1809
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
Hypothesis
Ref Expression
cbvalvw.1
Assertion
Ref Expression
cbvalvw
Distinct variable groups:   ,   ,   ,

Proof of Theorem cbvalvw
StepHypRef Expression
1 ax-5 1704 . 2
2 ax-5 1704 . 2
3 ax-5 1704 . 2
4 ax-5 1704 . 2
5 cbvalvw.1 . 2
61, 2, 3, 4, 5cbvalw 1808 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393
This theorem is referenced by:  cbvexvw  1810  hba1w  1814  ax12wdemo  1831  frege70  37961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator