Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalw Unicode version

Theorem cbvalw 1808
 Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypotheses
Ref Expression
cbvalw.1
cbvalw.2
cbvalw.3
cbvalw.4
cbvalw.5
Assertion
Ref Expression
cbvalw
Distinct variable group:   ,

Proof of Theorem cbvalw
StepHypRef Expression
1 cbvalw.1 . . 3
2 cbvalw.2 . . 3
3 cbvalw.5 . . . 4
43biimpd 207 . . 3
51, 2, 4cbvaliw 1788 . 2
6 cbvalw.3 . . 3
7 cbvalw.4 . . 3
83biimprd 223 . . . 4
98equcoms 1795 . . 3
106, 7, 9cbvaliw 1788 . 2
115, 10impbii 188 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393 This theorem is referenced by:  cbvalvw  1809  hbn1fw  1812 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790 This theorem depends on definitions:  df-bi 185  df-ex 1613
 Copyright terms: Public domain W3C validator