![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvcsb | Unicode version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on . (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvcsb.1 | |
cbvcsb.2 | |
cbvcsb.3 |
Ref | Expression |
---|---|
cbvcsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsb.1 | . . . . 5 | |
2 | 1 | nfcri 2612 | . . . 4 |
3 | cbvcsb.2 | . . . . 5 | |
4 | 3 | nfcri 2612 | . . . 4 |
5 | cbvcsb.3 | . . . . 5 | |
6 | 5 | eleq2d 2527 | . . . 4 |
7 | 2, 4, 6 | cbvsbc 3356 | . . 3 |
8 | 7 | abbii 2591 | . 2 |
9 | df-csb 3435 | . 2 | |
10 | df-csb 3435 | . 2 | |
11 | 8, 9, 10 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 { cab 2442 F/_ wnfc 2605
[. wsbc 3327 [_ csb 3434 |
This theorem is referenced by: cbvcsbv 3440 cbvsum 13517 cbvprod 13722 measiuns 28188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |