![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvex | Unicode version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
cbval.1 | |
cbval.2 | |
cbval.3 |
Ref | Expression |
---|---|
cbvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval.1 | . . . . 5 | |
2 | 1 | nfn 1901 | . . . 4 |
3 | cbval.2 | . . . . 5 | |
4 | 3 | nfn 1901 | . . . 4 |
5 | cbval.3 | . . . . 5 | |
6 | 5 | notbid 294 | . . . 4 |
7 | 2, 4, 6 | cbval 2021 | . . 3 |
8 | 7 | notbii 296 | . 2 |
9 | df-ex 1613 | . 2 | |
10 | df-ex 1613 | . 2 | |
11 | 8, 9, 10 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 A. wal 1393 E. wex 1612
F/ wnf 1616 |
This theorem is referenced by: cbvexv 2024 cbvex2OLD 2029 sb8e 2168 exsb 2212 euf 2292 mo2 2293 cbvmo 2322 clelab 2601 clelabOLD 2602 issetf 3114 eqvincf 3227 rexab2 3266 euabsn 4102 eluniab 4260 cbvopab1 4522 cbvopab2 4523 cbvopab1s 4524 axrep1 4564 axrep2 4565 axrep4 4567 opeliunxp 5056 dfdmf 5201 dfrnf 5246 elrnmpt1 5256 cbvoprab1 6369 cbvoprab2 6370 opabex3d 6778 opabex3 6779 zfcndrep 9013 fsum2dlem 13585 fprod2dlem 13784 sbcexf 30518 elunif 31391 stoweidlem46 31828 opeliun2xp 32922 bnj1146 33850 bnj607 33974 bnj1228 34067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |