![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvexd | Unicode version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2079. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
cbvald.1 | |
cbvald.2 | |
cbvald.3 |
Ref | Expression |
---|---|
cbvexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvald.1 | . . . 4 | |
2 | cbvald.2 | . . . . 5 | |
3 | 2 | nfnd 1902 | . . . 4 |
4 | cbvald.3 | . . . . 5 | |
5 | notbi 295 | . . . . 5 | |
6 | 4, 5 | syl6ib 226 | . . . 4 |
7 | 1, 3, 6 | cbvald 2025 | . . 3 |
8 | 7 | notbid 294 | . 2 |
9 | df-ex 1613 | . 2 | |
10 | df-ex 1613 | . 2 | |
11 | 8, 9, 10 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 A. wal 1393 E. wex 1612
F/ wnf 1616 |
This theorem is referenced by: cbvexdva 2033 vtoclgft 3157 dfid3 4801 axrepndlem2 8989 axunnd 8992 axpowndlem2 8994 axpowndlem2OLD 8995 axpownd 8999 axregndlem2 9001 axinfndlem1 9004 axacndlem4 9009 wl-mo2dnae 30019 wl-mo2t 30020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |