![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvexv | Unicode version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
cbvalv.1 |
Ref | Expression |
---|---|
cbvexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . 2 | |
2 | nfv 1707 | . 2 | |
3 | cbvalv.1 | . 2 | |
4 | 1, 2, 3 | cbvex 2022 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
E. wex 1612 |
This theorem is referenced by: eujust 2284 euind 3286 reuind 3303 cbvopab2v 4526 bm1.3ii 4576 reusv2lem2 4654 relop 5158 dmcoss 5267 fv3 5884 exfo 6049 zfun 6593 ac6sfi 7784 brwdom2 8020 aceq1 8519 aceq0 8520 aceq3lem 8522 dfac4 8524 kmlem2 8552 kmlem13 8563 axdc4lem 8856 zfac 8861 zfcndun 9014 zfcndac 9018 sup2 10524 supmul 10536 climmo 13380 summo 13539 prodmo 13743 gsumval3eu 16907 elpt 20073 usgraedg4 24387 wfrlem1 29343 frrlem1 29387 fdc 30238 axc11next 31313 fnchoice 31404 bnj1185 33852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |