MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexvw Unicode version

Theorem cbvexvw 1810
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.)
Hypothesis
Ref Expression
cbvalvw.1
Assertion
Ref Expression
cbvexvw
Distinct variable groups:   ,   ,   ,

Proof of Theorem cbvexvw
StepHypRef Expression
1 cbvalvw.1 . . . . 5
21notbid 294 . . . 4
32cbvalvw 1809 . . 3
43notbii 296 . 2
5 df-ex 1613 . 2
6 df-ex 1613 . 2
74, 5, 63bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  suppimacnv  6929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator