Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixpv Unicode version

Theorem cbvixpv 7507
 Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1
Assertion
Ref Expression
cbvixpv
Distinct variable groups:   ,,   ,   ,

Proof of Theorem cbvixpv
StepHypRef Expression
1 nfcv 2619 . 2
2 nfcv 2619 . 2
3 cbvixpv.1 . 2
41, 2, 3cbvixp 7506 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  X_cixp 7489 This theorem is referenced by:  funcpropd  15269  invfuc  15343  natpropd  15345  dprdw  17043  dprdwd  17044  dprdwOLD  17050  ptuni2  20077  ptbasin  20078  ptbasfi  20082  ptpjopn  20113  ptclsg  20116  dfac14  20119  ptcnp  20123  ptcmplem2  20553  ptcmpg  20557  prdsxmslem2  21032  upixp  30220 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fn 5596  df-fv 5601  df-ixp 7490
 Copyright terms: Public domain W3C validator