![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvmpt2v | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4542, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpt2v.1 | |
cbvmpt2v.2 |
Ref | Expression |
---|---|
cbvmpt2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | nfcv 2619 | . 2 | |
4 | nfcv 2619 | . 2 | |
5 | cbvmpt2v.1 | . . 3 | |
6 | cbvmpt2v.2 | . . 3 | |
7 | 5, 6 | sylan9eq 2518 | . 2 |
8 | 1, 2, 3, 4, 7 | cbvmpt2 6376 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. cmpt2 6298 |
This theorem is referenced by: seqomlem0 7133 dffi3 7911 cantnfsuc 8110 cantnfsucOLD 8140 fin23lem33 8746 om2uzrdg 12067 uzrdgsuci 12071 sadcp1 14105 smupp1 14130 imasvscafn 14934 mgmnsgrpex 16049 sgrpnmndex 16050 sylow1 16623 sylow2b 16643 sylow3lem5 16651 sylow3 16653 efgmval 16730 efgtf 16740 frlmphl 18812 pmatcollpw3lem 19284 mp2pm2mplem3 19309 txbas 20068 bcth 21768 opnmbl 22011 mbfimaopn 22063 mbfi1fseq 22128 motplusg 23929 ttgval 24178 numclwwlk5 25112 opsqrlem3 27061 fvproj 27835 dya2iocival 28244 sxbrsigalem5 28259 sxbrsigalem6 28260 eulerpart 28321 sseqp1 28334 cvmliftlem15 28743 cvmlift2 28761 opnmbllem0 30050 mblfinlem1 30051 mblfinlem2 30052 sdc 30237 funcrngcsetc 32806 funcrngcsetcALT 32807 funcringcsetc 32843 lmod1zr 33094 tendoplcbv 36501 dvhvaddcbv 36816 dvhvscacbv 36825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |