![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvmpt2x | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpt2 6376 allows to be a function of . (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
cbvmpt2x.1 | |
cbvmpt2x.2 | |
cbvmpt2x.3 | |
cbvmpt2x.4 | |
cbvmpt2x.5 | |
cbvmpt2x.6 | |
cbvmpt2x.7 | |
cbvmpt2x.8 |
Ref | Expression |
---|---|
cbvmpt2x |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . . 5 | |
2 | cbvmpt2x.1 | . . . . . 6 | |
3 | 2 | nfcri 2612 | . . . . 5 |
4 | 1, 3 | nfan 1928 | . . . 4 |
5 | cbvmpt2x.3 | . . . . 5 | |
6 | 5 | nfeq2 2636 | . . . 4 |
7 | 4, 6 | nfan 1928 | . . 3 |
8 | nfv 1707 | . . . . 5 | |
9 | nfcv 2619 | . . . . . 6 | |
10 | 9 | nfcri 2612 | . . . . 5 |
11 | 8, 10 | nfan 1928 | . . . 4 |
12 | cbvmpt2x.4 | . . . . 5 | |
13 | 12 | nfeq2 2636 | . . . 4 |
14 | 11, 13 | nfan 1928 | . . 3 |
15 | nfv 1707 | . . . . 5 | |
16 | cbvmpt2x.2 | . . . . . 6 | |
17 | 16 | nfcri 2612 | . . . . 5 |
18 | 15, 17 | nfan 1928 | . . . 4 |
19 | cbvmpt2x.5 | . . . . 5 | |
20 | 19 | nfeq2 2636 | . . . 4 |
21 | 18, 20 | nfan 1928 | . . 3 |
22 | nfv 1707 | . . . 4 | |
23 | cbvmpt2x.6 | . . . . 5 | |
24 | 23 | nfeq2 2636 | . . . 4 |
25 | 22, 24 | nfan 1928 | . . 3 |
26 | eleq1 2529 | . . . . . 6 | |
27 | 26 | adantr 465 | . . . . 5 |
28 | cbvmpt2x.7 | . . . . . . 7 | |
29 | 28 | eleq2d 2527 | . . . . . 6 |
30 | eleq1 2529 | . . . . . 6 | |
31 | 29, 30 | sylan9bb 699 | . . . . 5 |
32 | 27, 31 | anbi12d 710 | . . . 4 |
33 | cbvmpt2x.8 | . . . . 5 | |
34 | 33 | eqeq2d 2471 | . . . 4 |
35 | 32, 34 | anbi12d 710 | . . 3 |
36 | 7, 14, 21, 25, 35 | cbvoprab12 6371 | . 2 |
37 | df-mpt2 6301 | . 2 | |
38 | df-mpt2 6301 | . 2 | |
39 | 36, 37, 38 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
F/_ wnfc 2605
{ coprab 6297 e. cmpt2 6298 |
This theorem is referenced by: cbvmpt2 6376 mpt2mptsx 6863 dmmpt2ssx 6865 gsumcom2 17003 ptcmpg 20557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |