![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvopab1s | Unicode version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvopab1s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . 4 | |
2 | nfv 1707 | . . . . . 6 | |
3 | nfs1v 2181 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | 4 | nfex 1948 | . . . 4 |
6 | opeq1 4217 | . . . . . . 7 | |
7 | 6 | eqeq2d 2471 | . . . . . 6 |
8 | sbequ12 1992 | . . . . . 6 | |
9 | 7, 8 | anbi12d 710 | . . . . 5 |
10 | 9 | exbidv 1714 | . . . 4 |
11 | 1, 5, 10 | cbvex 2022 | . . 3 |
12 | 11 | abbii 2591 | . 2 |
13 | df-opab 4511 | . 2 | |
14 | df-opab 4511 | . 2 | |
15 | 12, 13, 14 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 [ wsb 1739 { cab 2442
<. cop 4035 { copab 4509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 |
Copyright terms: Public domain | W3C validator |