Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopabv Unicode version

Theorem cbvopabv 4521
 Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
Hypothesis
Ref Expression
cbvopabv.1
Assertion
Ref Expression
cbvopabv
Distinct variable groups:   ,,,   ,,   ,,

Proof of Theorem cbvopabv
StepHypRef Expression
1 nfv 1707 . 2
2 nfv 1707 . 2
3 nfv 1707 . 2
4 nfv 1707 . 2
5 cbvopabv.1 . 2
61, 2, 3, 4, 5cbvopab 4520 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  {copab 4509 This theorem is referenced by:  cantnf  8133  cantnfOLD  8155  infxpen  8413  axdc2  8850  fpwwe2cbv  9029  fpwwecbv  9043  sylow1  16623  bcth  21768  vitali  22022  lgsquadlem3  23631  lgsquad  23632  ishpg  24128  axcontlem1  24267  eulerpartlemgvv  28315  eulerpart  28321  cvmlift2lem13  28760  pellex  30771  aomclem8  31007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511
 Copyright terms: Public domain W3C validator