![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvoprab12 | Unicode version |
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
cbvoprab12.1 | |
cbvoprab12.2 | |
cbvoprab12.3 | |
cbvoprab12.4 | |
cbvoprab12.5 |
Ref | Expression |
---|---|
cbvoprab12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . . 5 | |
2 | cbvoprab12.1 | . . . . 5 | |
3 | 1, 2 | nfan 1928 | . . . 4 |
4 | nfv 1707 | . . . . 5 | |
5 | cbvoprab12.2 | . . . . 5 | |
6 | 4, 5 | nfan 1928 | . . . 4 |
7 | nfv 1707 | . . . . 5 | |
8 | cbvoprab12.3 | . . . . 5 | |
9 | 7, 8 | nfan 1928 | . . . 4 |
10 | nfv 1707 | . . . . 5 | |
11 | cbvoprab12.4 | . . . . 5 | |
12 | 10, 11 | nfan 1928 | . . . 4 |
13 | opeq12 4219 | . . . . . 6 | |
14 | 13 | eqeq2d 2471 | . . . . 5 |
15 | cbvoprab12.5 | . . . . 5 | |
16 | 14, 15 | anbi12d 710 | . . . 4 |
17 | 3, 6, 9, 12, 16 | cbvex2 2028 | . . 3 |
18 | 17 | opabbii 4516 | . 2 |
19 | dfoprab2 6343 | . 2 | |
20 | dfoprab2 6343 | . 2 | |
21 | 18, 19, 20 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
F/ wnf 1616 <. cop 4035 { copab 4509 { coprab 6297 |
This theorem is referenced by: cbvoprab12v 6372 cbvmpt2x 6375 dfoprab4f 6858 fmpt2x 6866 tposoprab 7010 cbvmpt2x2 32925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |