MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuv Unicode version

Theorem cbvreuv 3086
Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvralv.1
Assertion
Ref Expression
cbvreuv
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1707 . 2
2 nfv 1707 . 2
3 cbvralv.1 . 2
41, 2, 3cbvreu 3082 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  E!wreu 2809
This theorem is referenced by:  reu8  3295  aceq1  8519  aceq2  8521  fin23lem27  8729  divalglem10  14060  lspsneu  17769  fourierdlem50  31939  lshpsmreu  34834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-cleq 2449  df-clel 2452  df-reu 2814
  Copyright terms: Public domain W3C validator