![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvrexv2 | Unicode version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvralv2.1 | |
cbvralv2.2 |
Ref | Expression |
---|---|
cbvrexv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | nfv 1707 | . 2 | |
4 | nfv 1707 | . 2 | |
5 | cbvralv2.2 | . 2 | |
6 | cbvralv2.1 | . 2 | |
7 | 1, 2, 3, 4, 5, 6 | cbvrexcsf 3467 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wrex 2808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |