![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvsum | Unicode version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
cbvsum.1 | |
cbvsum.2 | |
cbvsum.3 | |
cbvsum.4 | |
cbvsum.5 |
Ref | Expression |
---|---|
cbvsum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.4 | . . . . . . . . . . . . 13 | |
2 | cbvsum.5 | . . . . . . . . . . . . 13 | |
3 | cbvsum.1 | . . . . . . . . . . . . 13 | |
4 | 1, 2, 3 | cbvcsb 3439 | . . . . . . . . . . . 12 |
5 | 4 | a1i 11 | . . . . . . . . . . 11 |
6 | 5 | ifeq1d 3959 | . . . . . . . . . 10 |
7 | 6 | mpteq2dv 4539 | . . . . . . . . 9 |
8 | 7 | seqeq3d 12115 | . . . . . . . 8 |
9 | 8 | trud 1404 | . . . . . . 7 |
10 | 9 | breq1i 4459 | . . . . . 6 |
11 | 10 | anbi2i 694 | . . . . 5 |
12 | 11 | rexbii 2959 | . . . 4 |
13 | 1, 2, 3 | cbvcsb 3439 | . . . . . . . . . . . . 13 |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 |
15 | 14 | mpteq2dv 4539 | . . . . . . . . . . 11 |
16 | 15 | seqeq3d 12115 | . . . . . . . . . 10 |
17 | 16 | trud 1404 | . . . . . . . . 9 |
18 | 17 | fveq1i 5872 | . . . . . . . 8 |
19 | 18 | eqeq2i 2475 | . . . . . . 7 |
20 | 19 | anbi2i 694 | . . . . . 6 |
21 | 20 | exbii 1667 | . . . . 5 |
22 | 21 | rexbii 2959 | . . . 4 |
23 | 12, 22 | orbi12i 521 | . . 3 |
24 | 23 | iotabii 5578 | . 2 |
25 | df-sum 13509 | . 2 | |
26 | df-sum 13509 | . 2 | |
27 | 24, 25, 26 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 wtru 1396 E. wex 1612 e. wcel 1818
F/_ wnfc 2605
E. wrex 2808 [_ csb 3434 C_ wss 3475
if cif 3941 class class class wbr 4452
e. cmpt 4510 iota cio 5554 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 sum_ csu 13508 |
This theorem is referenced by: cbvsumv 13518 cbvsumi 13519 esumpfinvalf 28082 fsumclf 31567 fsumsplitf 31568 fsummulc1f 31569 dvnmul 31740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-recs 7061 df-rdg 7095 df-seq 12108 df-sum 13509 |
Copyright terms: Public domain | W3C validator |