![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cbvsumv | Unicode version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
cbvsum.1 |
Ref | Expression |
---|---|
cbvsumv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.1 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | nfcv 2619 | . 2 | |
4 | nfcv 2619 | . 2 | |
5 | nfcv 2619 | . 2 | |
6 | 1, 2, 3, 4, 5 | cbvsum 13517 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
sum_ csu 13508 |
This theorem is referenced by: isumge0 13581 telfsumo 13616 fsumparts 13620 binomlem 13641 incexclem 13648 mertenslem1 13693 mertens 13695 efaddlem 13828 bitsinv2 14093 prmreclem6 14439 ovolicc2lem4 21931 uniioombllem6 21997 plymullem1 22611 plyadd 22614 plymul 22615 coeeu 22622 coeid 22635 dvply1 22680 vieta1 22708 aaliou3 22747 abelthlem8 22834 abelthlem9 22835 abelth 22836 logtayl 23041 ftalem2 23347 ftalem6 23351 dchrsum2 23543 sumdchr2 23545 dchrisumlem1 23674 dchrisum 23677 dchrisum0fval 23690 dchrisum0ff 23692 rpvmasum 23711 mulog2sumlem1 23719 2vmadivsumlem 23725 logsqvma 23727 logsqvma2 23728 selberg 23733 chpdifbndlem1 23738 selberg3lem1 23742 selberg4lem1 23745 pntsval 23757 pntsval2 23761 pntpbnd1 23771 pntlemo 23792 axsegconlem9 24228 hashunif 27605 eulerpartlems 28299 eulerpartlemgs2 28319 binomfallfaclem2 29162 bpolyval 29811 binomcxplemnotnn0 31261 mccl 31606 sumnnodd 31636 dvnprodlem1 31743 dvnprodlem3 31745 dvnprod 31746 fourierdlem73 31962 fourierdlem112 32001 fourierdlem113 32002 etransclem11 32028 etransclem32 32049 etransclem35 32052 etransc 32066 altgsumbcALT 32942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-recs 7061 df-rdg 7095 df-seq 12108 df-sum 13509 |
Copyright terms: Public domain | W3C validator |