![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ccatass | Unicode version |
Description: Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
ccatass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatcl 12593 | . . . . 5 | |
2 | ccatcl 12593 | . . . . 5 | |
3 | 1, 2 | stoic3 1609 | . . . 4 |
4 | wrdf 12553 | . . . 4 | |
5 | ffn 5736 | . . . 4 | |
6 | 3, 4, 5 | 3syl 20 | . . 3 |
7 | ccatlen 12594 | . . . . . . 7 | |
8 | 1, 7 | stoic3 1609 | . . . . . 6 |
9 | ccatlen 12594 | . . . . . . . 8 | |
10 | 9 | 3adant3 1016 | . . . . . . 7 |
11 | 10 | oveq1d 6311 | . . . . . 6 |
12 | 8, 11 | eqtrd 2498 | . . . . 5 |
13 | 12 | oveq2d 6312 | . . . 4 |
14 | 13 | fneq2d 5677 | . . 3 |
15 | 6, 14 | mpbid 210 | . 2 |
16 | simp1 996 | . . . . 5 | |
17 | ccatcl 12593 | . . . . . 6 | |
18 | 17 | 3adant1 1014 | . . . . 5 |
19 | ccatcl 12593 | . . . . 5 | |
20 | 16, 18, 19 | syl2anc 661 | . . . 4 |
21 | wrdf 12553 | . . . 4 | |
22 | ffn 5736 | . . . 4 | |
23 | 20, 21, 22 | 3syl 20 | . . 3 |
24 | ccatlen 12594 | . . . . . . . 8 | |
25 | 24 | 3adant1 1014 | . . . . . . 7 |
26 | 25 | oveq2d 6312 | . . . . . 6 |
27 | ccatlen 12594 | . . . . . . 7 | |
28 | 16, 18, 27 | syl2anc 661 | . . . . . 6 |
29 | lencl 12562 | . . . . . . . . 9 | |
30 | 29 | 3ad2ant1 1017 | . . . . . . . 8 |
31 | 30 | nn0cnd 10879 | . . . . . . 7 |
32 | lencl 12562 | . . . . . . . . 9 | |
33 | 32 | 3ad2ant2 1018 | . . . . . . . 8 |
34 | 33 | nn0cnd 10879 | . . . . . . 7 |
35 | lencl 12562 | . . . . . . . . 9 | |
36 | 35 | 3ad2ant3 1019 | . . . . . . . 8 |
37 | 36 | nn0cnd 10879 | . . . . . . 7 |
38 | 31, 34, 37 | addassd 9639 | . . . . . 6 |
39 | 26, 28, 38 | 3eqtr4d 2508 | . . . . 5 |
40 | 39 | oveq2d 6312 | . . . 4 |
41 | 40 | fneq2d 5677 | . . 3 |
42 | 23, 41 | mpbid 210 | . 2 |
43 | 30 | nn0zd 10992 | . . . 4 |
44 | fzospliti 11857 | . . . . 5 | |
45 | 44 | ancoms 453 | . . . 4 |
46 | 43, 45 | sylan 471 | . . 3 |
47 | simpl1 999 | . . . . . 6 | |
48 | simpl2 1000 | . . . . . 6 | |
49 | simpr 461 | . . . . . 6 | |
50 | ccatval1 12595 | . . . . . 6 | |
51 | 47, 48, 49, 50 | syl3anc 1228 | . . . . 5 |
52 | 1 | 3adant3 1016 | . . . . . . 7 |
53 | 52 | adantr 465 | . . . . . 6 |
54 | simpl3 1001 | . . . . . 6 | |
55 | uzid 11124 | . . . . . . . . . . 11 | |
56 | 43, 55 | syl 16 | . . . . . . . . . 10 |
57 | uzaddcl 11166 | . . . . . . . . . 10 | |
58 | 56, 33, 57 | syl2anc 661 | . . . . . . . . 9 |
59 | fzoss2 11853 | . . . . . . . . 9 | |
60 | 58, 59 | syl 16 | . . . . . . . 8 |
61 | 10 | oveq2d 6312 | . . . . . . . 8 |
62 | 60, 61 | sseqtr4d 3540 | . . . . . . 7 |
63 | 62 | sselda 3503 | . . . . . 6 |
64 | ccatval1 12595 | . . . . . 6 | |
65 | 53, 54, 63, 64 | syl3anc 1228 | . . . . 5 |
66 | 18 | adantr 465 | . . . . . 6 |
67 | ccatval1 12595 | . . . . . 6 | |
68 | 47, 66, 49, 67 | syl3anc 1228 | . . . . 5 |
69 | 51, 65, 68 | 3eqtr4d 2508 | . . . 4 |
70 | 33 | nn0zd 10992 | . . . . . . 7 |
71 | 43, 70 | zaddcld 10998 | . . . . . 6 |
72 | fzospliti 11857 | . . . . . . 7 | |
73 | 72 | ancoms 453 | . . . . . 6 |
74 | 71, 73 | sylan 471 | . . . . 5 |
75 | simpl1 999 | . . . . . . . . 9 | |
76 | simpl2 1000 | . . . . . . . . 9 | |
77 | simpr 461 | . . . . . . . . 9 | |
78 | ccatval2 12596 | . . . . . . . . 9 | |
79 | 75, 76, 77, 78 | syl3anc 1228 | . . . . . . . 8 |
80 | simpl3 1001 | . . . . . . . . 9 | |
81 | fzosubel3 11877 | . . . . . . . . . . 11 | |
82 | 81 | ancoms 453 | . . . . . . . . . 10 |
83 | 70, 82 | sylan 471 | . . . . . . . . 9 |
84 | ccatval1 12595 | . . . . . . . . 9 | |
85 | 76, 80, 83, 84 | syl3anc 1228 | . . . . . . . 8 |
86 | 79, 85 | eqtr4d 2501 | . . . . . . 7 |
87 | 52 | adantr 465 | . . . . . . . 8 |
88 | fzoss1 11852 | . . . . . . . . . . . 12 | |
89 | nn0uz 11144 | . . . . . . . . . . . 12 | |
90 | 88, 89 | eleq2s 2565 | . . . . . . . . . . 11 |
91 | 30, 90 | syl 16 | . . . . . . . . . 10 |
92 | 91, 61 | sseqtr4d 3540 | . . . . . . . . 9 |
93 | 92 | sselda 3503 | . . . . . . . 8 |
94 | 87, 80, 93, 64 | syl3anc 1228 | . . . . . . 7 |
95 | 18 | adantr 465 | . . . . . . . 8 |
96 | uzid 11124 | . . . . . . . . . . . . 13 | |
97 | 71, 96 | syl 16 | . . . . . . . . . . . 12 |
98 | uzaddcl 11166 | . . . . . . . . . . . 12 | |
99 | 97, 36, 98 | syl2anc 661 | . . . . . . . . . . 11 |
100 | fzoss2 11853 | . . . . . . . . . . 11 | |
101 | 99, 100 | syl 16 | . . . . . . . . . 10 |
102 | 26, 38 | eqtr4d 2501 | . . . . . . . . . . 11 |
103 | 102 | oveq2d 6312 | . . . . . . . . . 10 |
104 | 101, 103 | sseqtr4d 3540 | . . . . . . . . 9 |
105 | 104 | sselda 3503 | . . . . . . . 8 |
106 | ccatval2 12596 | . . . . . . . 8 | |
107 | 75, 95, 105, 106 | syl3anc 1228 | . . . . . . 7 |
108 | 86, 94, 107 | 3eqtr4d 2508 | . . . . . 6 |
109 | 10 | oveq2d 6312 | . . . . . . . . . . 11 |
110 | 109 | adantr 465 | . . . . . . . . . 10 |
111 | elfzoelz 11829 | . . . . . . . . . . . . 13 | |
112 | 111 | zcnd 10995 | . . . . . . . . . . . 12 |
113 | 112 | adantl 466 | . . . . . . . . . . 11 |
114 | 31 | adantr 465 | . . . . . . . . . . 11 |
115 | 34 | adantr 465 | . . . . . . . . . . 11 |
116 | 113, 114, 115 | subsub4d 9985 | . . . . . . . . . 10 |
117 | 110, 116 | eqtr4d 2501 | . . . . . . . . 9 |
118 | 117 | fveq2d 5875 | . . . . . . . 8 |
119 | simpl2 1000 | . . . . . . . . 9 | |
120 | simpl3 1001 | . . . . . . . . 9 | |
121 | 38 | oveq2d 6312 | . . . . . . . . . . . 12 |
122 | 121 | eleq2d 2527 | . . . . . . . . . . 11 |
123 | 122 | biimpa 484 | . . . . . . . . . 10 |
124 | 43 | adantr 465 | . . . . . . . . . 10 |
125 | 70 | adantr 465 | . . . . . . . . . 10 |
126 | 36 | nn0zd 10992 | . . . . . . . . . . . 12 |
127 | 70, 126 | zaddcld 10998 | . . . . . . . . . . 11 |
128 | 127 | adantr 465 | . . . . . . . . . 10 |
129 | fzosubel2 11876 | . . . . . . . . . 10 | |
130 | 123, 124, 125, 128, 129 | syl13anc 1230 | . . . . . . . . 9 |
131 | ccatval2 12596 | . . . . . . . . 9 | |
132 | 119, 120, 130, 131 | syl3anc 1228 | . . . . . . . 8 |
133 | 118, 132 | eqtr4d 2501 | . . . . . . 7 |
134 | 52 | adantr 465 | . . . . . . . 8 |
135 | 10, 11 | oveq12d 6314 | . . . . . . . . . 10 |
136 | 135 | eleq2d 2527 | . . . . . . . . 9 |
137 | 136 | biimpar 485 | . . . . . . . 8 |
138 | ccatval2 12596 | . . . . . . . 8 | |
139 | 134, 120, 137, 138 | syl3anc 1228 | . . . . . . 7 |
140 | simpl1 999 | . . . . . . . 8 | |
141 | 18 | adantr 465 | . . . . . . . 8 |
142 | fzoss1 11852 | . . . . . . . . . . 11 | |
143 | 58, 142 | syl 16 | . . . . . . . . . 10 |
144 | 143, 103 | sseqtr4d 3540 | . . . . . . . . 9 |
145 | 144 | sselda 3503 | . . . . . . . 8 |
146 | 140, 141, 145, 106 | syl3anc 1228 | . . . . . . 7 |
147 | 133, 139, 146 | 3eqtr4d 2508 | . . . . . 6 |
148 | 108, 147 | jaodan 785 | . . . . 5 |
149 | 74, 148 | syldan 470 | . . . 4 |
150 | 69, 149 | jaodan 785 | . . 3 |
151 | 46, 150 | syldan 470 | . 2 |
152 | 15, 42, 151 | eqfnfvd 5984 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 C_ wss 3475 Fn wfn 5588
--> wf 5589 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 caddc 9516 cmin 9828 cn0 10820
cz 10889 cuz 11110
cfzo 11824 chash 12405 Word cword 12534 cconcat 12536 |
This theorem is referenced by: ccatw2s1ass 12634 cats1cat 12826 frmdmnd 16027 efginvrel2 16745 efgredleme 16761 efgredlemc 16763 efgcpbllemb 16773 numclwlk1lem2foa 25091 numclwlk1lem2fo 25095 signstfvc 28531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 |