![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ccatco | Unicode version |
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
ccatco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenco 12798 | . . . . . . 7 | |
2 | 1 | 3adant2 1015 | . . . . . 6 |
3 | lenco 12798 | . . . . . . 7 | |
4 | 3 | 3adant1 1014 | . . . . . 6 |
5 | 2, 4 | oveq12d 6314 | . . . . 5 |
6 | 5 | oveq2d 6312 | . . . 4 |
7 | 6 | mpteq1d 4533 | . . 3 |
8 | 2 | oveq2d 6312 | . . . . . . . 8 |
9 | 8 | adantr 465 | . . . . . . 7 |
10 | 9 | eleq2d 2527 | . . . . . 6 |
11 | 10 | ifbid 3963 | . . . . 5 |
12 | wrdf 12553 | . . . . . . . . . . 11 | |
13 | 12 | 3ad2ant1 1017 | . . . . . . . . . 10 |
14 | 13 | adantr 465 | . . . . . . . . 9 |
15 | ffn 5736 | . . . . . . . . 9 | |
16 | 14, 15 | syl 16 | . . . . . . . 8 |
17 | fvco2 5948 | . . . . . . . 8 | |
18 | 16, 17 | sylan 471 | . . . . . . 7 |
19 | iftrue 3947 | . . . . . . . 8 | |
20 | 19 | adantl 466 | . . . . . . 7 |
21 | 18, 20 | eqtr4d 2501 | . . . . . 6 |
22 | wrdf 12553 | . . . . . . . . . . 11 | |
23 | 22 | 3ad2ant2 1018 | . . . . . . . . . 10 |
24 | 23 | ad2antrr 725 | . . . . . . . . 9 |
25 | ffn 5736 | . . . . . . . . 9 | |
26 | 24, 25 | syl 16 | . . . . . . . 8 |
27 | lencl 12562 | . . . . . . . . . . . . 13 | |
28 | 27 | nn0zd 10992 | . . . . . . . . . . . 12 |
29 | 28 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
30 | fzospliti 11857 | . . . . . . . . . . . 12 | |
31 | 30 | ancoms 453 | . . . . . . . . . . 11 |
32 | 29, 31 | sylan 471 | . . . . . . . . . 10 |
33 | 32 | orcanai 913 | . . . . . . . . 9 |
34 | lencl 12562 | . . . . . . . . . . . 12 | |
35 | 34 | nn0zd 10992 | . . . . . . . . . . 11 |
36 | 35 | 3ad2ant2 1018 | . . . . . . . . . 10 |
37 | 36 | ad2antrr 725 | . . . . . . . . 9 |
38 | fzosubel3 11877 | . . . . . . . . 9 | |
39 | 33, 37, 38 | syl2anc 661 | . . . . . . . 8 |
40 | fvco2 5948 | . . . . . . . 8 | |
41 | 26, 39, 40 | syl2anc 661 | . . . . . . 7 |
42 | 2 | oveq2d 6312 | . . . . . . . . 9 |
43 | 42 | fveq2d 5875 | . . . . . . . 8 |
44 | 43 | ad2antrr 725 | . . . . . . 7 |
45 | iffalse 3950 | . . . . . . . 8 | |
46 | 45 | adantl 466 | . . . . . . 7 |
47 | 41, 44, 46 | 3eqtr4d 2508 | . . . . . 6 |
48 | 21, 47 | ifeqda 3974 | . . . . 5 |
49 | 11, 48 | eqtrd 2498 | . . . 4 |
50 | 49 | mpteq2dva 4538 | . . 3 |
51 | 7, 50 | eqtr2d 2499 | . 2 |
52 | 14 | ffvelrnda 6031 | . . . 4 |
53 | 24, 39 | ffvelrnd 6032 | . . . 4 |
54 | 52, 53 | ifclda 3973 | . . 3 |
55 | ccatfval 12592 | . . . 4 | |
56 | 55 | 3adant3 1016 | . . 3 |
57 | simp3 998 | . . . 4 | |
58 | 57 | feqmptd 5926 | . . 3 |
59 | fveq2 5871 | . . . 4 | |
60 | fvif 5882 | . . . 4 | |
61 | 59, 60 | syl6eq 2514 | . . 3 |
62 | 54, 56, 58, 61 | fmptco 6064 | . 2 |
63 | ffun 5738 | . . . . 5 | |
64 | 63 | 3ad2ant3 1019 | . . . 4 |
65 | simp1 996 | . . . 4 | |
66 | cofunexg 6764 | . . . 4 | |
67 | 64, 65, 66 | syl2anc 661 | . . 3 |
68 | simp2 997 | . . . 4 | |
69 | cofunexg 6764 | . . . 4 | |
70 | 64, 68, 69 | syl2anc 661 | . . 3 |
71 | ccatfval 12592 | . . 3 | |
72 | 67, 70, 71 | syl2anc 661 | . 2 |
73 | 51, 62, 72 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 cvv 3109
if cif 3941 e. cmpt 4510 o. ccom 5008
Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593
(class class class)co 6296 0 cc0 9513
caddc 9516 cmin 9828 cz 10889 cfzo 11824 chash 12405 Word cword 12534 cconcat 12536 |
This theorem is referenced by: cats1co 12821 frmdgsum 16030 frmdup1 16032 efginvrel2 16745 frgpuplem 16790 frgpup1 16793 mrsubccat 28878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-concat 12544 |
Copyright terms: Public domain | W3C validator |