![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ceqsalg | Unicode version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3135. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
ceqsalg.1 | |
ceqsalg.2 |
Ref | Expression |
---|---|
ceqsalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsalg.1 | . 2 | |
2 | ceqsalg.2 | . . 3 | |
3 | 2 | ax-gen 1618 | . 2 |
4 | ceqsalt 3132 | . 2 | |
5 | 1, 3, 4 | mp3an12 1314 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 F/ wnf 1616
e. wcel 1818 |
This theorem is referenced by: ceqsal 3136 uniiunlem 3587 ralrnmpt2 6417 sucprcregOLD 8047 fimaxre3 10517 pmapglbx 35493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |