![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ceqsalgALT | Unicode version |
Description: Alternate proof of ceqsalg 3134, not using ceqsalt 3132. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ceqsalg.1 | |
ceqsalg.2 |
Ref | Expression |
---|---|
ceqsalgALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 3120 | . . 3 | |
2 | nfa1 1897 | . . . 4 | |
3 | ceqsalg.1 | . . . 4 | |
4 | ceqsalg.2 | . . . . . . 7 | |
5 | 4 | biimpd 207 | . . . . . 6 |
6 | 5 | a2i 13 | . . . . 5 |
7 | 6 | sps 1865 | . . . 4 |
8 | 2, 3, 7 | exlimd 1914 | . . 3 |
9 | 1, 8 | syl5com 30 | . 2 |
10 | 4 | biimprcd 225 | . . 3 |
11 | 3, 10 | alrimi 1877 | . 2 |
12 | 9, 11 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 E. wex 1612
F/ wnf 1616 e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |