MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalt Unicode version

Theorem ceqsalt 3132
Description: Closed theorem version of ceqsalg 3134. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt
Distinct variable group:   ,

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 3120 . . . 4
213ad2ant3 1019 . . 3
3 bi1 186 . . . . . . 7
43imim3i 59 . . . . . 6
54al2imi 1636 . . . . 5
653ad2ant2 1018 . . . 4
7 19.23t 1909 . . . . 5
873ad2ant1 1017 . . . 4
96, 8sylibd 214 . . 3
102, 9mpid 41 . 2
11 bi2 198 . . . . . . 7
1211imim2i 14 . . . . . 6
1312com23 78 . . . . 5
1413alimi 1633 . . . 4
15143ad2ant2 1018 . . 3
16 19.21t 1904 . . . 4
17163ad2ant1 1017 . . 3
1815, 17mpbid 210 . 2
1910, 18impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\w3a 973  A.wal 1393  =wceq 1395  E.wex 1612  F/wnf 1616  e.wcel 1818
This theorem is referenced by:  ceqsralt  3133  ceqsalg  3134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator