![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ceqsex | Unicode version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
ceqsex.1 | |
ceqsex.2 | |
ceqsex.3 |
Ref | Expression |
---|---|
ceqsex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsex.1 | . . 3 | |
2 | ceqsex.3 | . . . 4 | |
3 | 2 | biimpa 484 | . . 3 |
4 | 1, 3 | exlimi 1912 | . 2 |
5 | 2 | biimprcd 225 | . . . 4 |
6 | 1, 5 | alrimi 1877 | . . 3 |
7 | ceqsex.2 | . . . 4 | |
8 | 7 | isseti 3115 | . . 3 |
9 | exintr 1702 | . . 3 | |
10 | 6, 8, 9 | mpisyl 18 | . 2 |
11 | 4, 10 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 F/ wnf 1616 e. wcel 1818
cvv 3109 |
This theorem is referenced by: ceqsexv 3146 ceqsex2 3147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |