MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex2 Unicode version

Theorem ceqsex2 3147
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2.1
ceqsex2.2
ceqsex2.3
ceqsex2.4
ceqsex2.5
ceqsex2.6
Assertion
Ref Expression
ceqsex2
Distinct variable groups:   , ,   , ,

Proof of Theorem ceqsex2
StepHypRef Expression
1 3anass 977 . . . . 5
21exbii 1667 . . . 4
3 19.42v 1775 . . . 4
42, 3bitri 249 . . 3
54exbii 1667 . 2
6 nfv 1707 . . . . 5
7 ceqsex2.1 . . . . 5
86, 7nfan 1928 . . . 4
98nfex 1948 . . 3
10 ceqsex2.3 . . 3
11 ceqsex2.5 . . . . 5
1211anbi2d 703 . . . 4
1312exbidv 1714 . . 3
149, 10, 13ceqsex 3145 . 2
15 ceqsex2.2 . . 3
16 ceqsex2.4 . . 3
17 ceqsex2.6 . . 3
1815, 16, 17ceqsex 3145 . 2
195, 14, 183bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  /\w3a 973  =wceq 1395  E.wex 1612  F/wnf 1616  e.wcel 1818   cvv 3109
This theorem is referenced by:  ceqsex2v  3148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator