MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Unicode version

Theorem ceqsralv 3138
Description: Restricted quantifier version of ceqsalv 3137. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2
Assertion
Ref Expression
ceqsralv
Distinct variable groups:   ,   ,   ,

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1707 . 2
2 ceqsralv.2 . . 3
32ax-gen 1618 . 2
4 ceqsralt 3133 . 2
51, 3, 4mp3an12 1314 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  F/wnf 1616  e.wcel 1818  A.wral 2807
This theorem is referenced by:  eqreu  3291  sqrt2irr  13982  acsfn  15056  ovolgelb  21891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ral 2812  df-v 3111
  Copyright terms: Public domain W3C validator