![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cflem | Unicode version |
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set . (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
cflem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3522 | . . 3 | |
2 | ssid 3522 | . . . . 5 | |
3 | sseq2 3525 | . . . . . 6 | |
4 | 3 | rspcev 3210 | . . . . 5 |
5 | 2, 4 | mpan2 671 | . . . 4 |
6 | 5 | rgen 2817 | . . 3 |
7 | sseq1 3524 | . . . . 5 | |
8 | rexeq 3055 | . . . . . 6 | |
9 | 8 | ralbidv 2896 | . . . . 5 |
10 | 7, 9 | anbi12d 710 | . . . 4 |
11 | 10 | spcegv 3195 | . . 3 |
12 | 1, 6, 11 | mp2ani 678 | . 2 |
13 | fvex 5881 | . . . . . 6 | |
14 | 13 | isseti 3115 | . . . . 5 |
15 | 19.41v 1771 | . . . . 5 | |
16 | 14, 15 | mpbiran 918 | . . . 4 |
17 | 16 | exbii 1667 | . . 3 |
18 | excom 1849 | . . 3 | |
19 | 17, 18 | bitr3i 251 | . 2 |
20 | 12, 19 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
` cfv 5593 ccrd 8337 |
This theorem is referenced by: cfval 8648 cff 8649 cff1 8659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |