![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cfslb2n | Unicode version |
Description: Any small collection of small subsets of cannot have union , where "small" means smaller than the cofinality. This is a stronger version of cfslb 8667. This is a common application of cofinality: under AC, is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
cfslb.1 |
Ref | Expression |
---|---|
cfslb2n |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 4942 | . . . . . . . . . 10 | |
2 | ordsson 6625 | . . . . . . . . . 10 | |
3 | sstr 3511 | . . . . . . . . . . 11 | |
4 | 3 | expcom 435 | . . . . . . . . . 10 |
5 | 1, 2, 4 | 3syl 20 | . . . . . . . . 9 |
6 | onsucuni 6663 | . . . . . . . . 9 | |
7 | 5, 6 | syl6 33 | . . . . . . . 8 |
8 | 7 | adantrd 468 | . . . . . . 7 |
9 | 8 | ralimdv 2867 | . . . . . 6 |
10 | uniiun 4383 | . . . . . . 7 | |
11 | ss2iun 4346 | . . . . . . 7 | |
12 | 10, 11 | syl5eqss 3547 | . . . . . 6 |
13 | 9, 12 | syl6 33 | . . . . 5 |
14 | 13 | imp 429 | . . . 4 |
15 | cfslb.1 | . . . . . . . . . 10 | |
16 | 15 | cfslbn 8668 | . . . . . . . . 9 |
17 | 16 | 3expib 1199 | . . . . . . . 8 |
18 | ordsucss 6653 | . . . . . . . 8 | |
19 | 1, 17, 18 | sylsyld 56 | . . . . . . 7 |
20 | 19 | ralimdv 2867 | . . . . . 6 |
21 | iunss 4371 | . . . . . 6 | |
22 | 20, 21 | syl6ibr 227 | . . . . 5 |
23 | 22 | imp 429 | . . . 4 |
24 | sseq1 3524 | . . . . . 6 | |
25 | eqss 3518 | . . . . . . 7 | |
26 | 25 | simplbi2com 627 | . . . . . 6 |
27 | 24, 26 | syl6bi 228 | . . . . 5 |
28 | 27 | com3l 81 | . . . 4 |
29 | 14, 23, 28 | sylc 60 | . . 3 |
30 | limsuc 6684 | . . . . . . . . 9 | |
31 | 17, 30 | sylibd 214 | . . . . . . . 8 |
32 | 31 | ralimdv 2867 | . . . . . . 7 |
33 | 32 | imp 429 | . . . . . 6 |
34 | r19.29 2992 | . . . . . . . 8 | |
35 | eleq1 2529 | . . . . . . . . . 10 | |
36 | 35 | biimparc 487 | . . . . . . . . 9 |
37 | 36 | rexlimivw 2946 | . . . . . . . 8 |
38 | 34, 37 | syl 16 | . . . . . . 7 |
39 | 38 | ex 434 | . . . . . 6 |
40 | 33, 39 | syl 16 | . . . . 5 |
41 | 40 | abssdv 3573 | . . . 4 |
42 | vex 3112 | . . . . . . . . 9 | |
43 | 42 | uniex 6596 | . . . . . . . 8 |
44 | 43 | sucex 6646 | . . . . . . 7 |
45 | 44 | dfiun2 4364 | . . . . . 6 |
46 | 45 | eqeq1i 2464 | . . . . 5 |
47 | 15 | cfslb 8667 | . . . . . 6 |
48 | 47 | 3expia 1198 | . . . . 5 |
49 | 46, 48 | syl5bi 217 | . . . 4 |
50 | 41, 49 | syldan 470 | . . 3 |
51 | eqid 2457 | . . . . . . . . 9 | |
52 | 51 | rnmpt 5253 | . . . . . . . 8 |
53 | 44, 51 | fnmpti 5714 | . . . . . . . . . 10 |
54 | dffn4 5806 | . . . . . . . . . 10 | |
55 | 53, 54 | mpbi 208 | . . . . . . . . 9 |
56 | relsdom 7543 | . . . . . . . . . . 11 | |
57 | 56 | brrelexi 5045 | . . . . . . . . . 10 |
58 | breq1 4455 | . . . . . . . . . . . 12 | |
59 | foeq2 5797 | . . . . . . . . . . . . 13 | |
60 | breq2 4456 | . . . . . . . . . . . . 13 | |
61 | 59, 60 | imbi12d 320 | . . . . . . . . . . . 12 |
62 | 58, 61 | imbi12d 320 | . . . . . . . . . . 11 |
63 | cfon 8656 | . . . . . . . . . . . . 13 | |
64 | sdomdom 7563 | . . . . . . . . . . . . 13 | |
65 | ondomen 8439 | . . . . . . . . . . . . 13 | |
66 | 63, 64, 65 | sylancr 663 | . . . . . . . . . . . 12 |
67 | fodomnum 8459 | . . . . . . . . . . . 12 | |
68 | 66, 67 | syl 16 | . . . . . . . . . . 11 |
69 | 62, 68 | vtoclg 3167 | . . . . . . . . . 10 |
70 | 57, 69 | mpcom 36 | . . . . . . . . 9 |
71 | 55, 70 | mpi 17 | . . . . . . . 8 |
72 | 52, 71 | syl5eqbrr 4486 | . . . . . . 7 |
73 | domtr 7588 | . . . . . . 7 | |
74 | 72, 73 | sylan2 474 | . . . . . 6 |
75 | domnsym 7663 | . . . . . 6 | |
76 | 74, 75 | syl 16 | . . . . 5 |
77 | 76 | pm2.01da 442 | . . . 4 |
78 | 77 | a1i 11 | . . 3 |
79 | 29, 50, 78 | 3syld 55 | . 2 |
80 | 79 | necon2ad 2670 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
{ cab 2442 =/= wne 2652 A. wral 2807
E. wrex 2808 cvv 3109
C_ wss 3475 U. cuni 4249 U_ ciun 4330
class class class wbr 4452 e. cmpt 4510
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 ran crn 5005 Fn wfn 5588
-onto-> wfo 5591
` cfv 5593 cdom 7534 csdm 7535 ccrd 8337 ccf 8339 |
This theorem is referenced by: tskuni 9182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-recs 7061 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-card 8341 df-cf 8343 df-acn 8344 |
Copyright terms: Public domain | W3C validator |