![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cfval | Unicode version |
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number is the cardinality (size) of the smallest unbounded subset of the ordinal number. Unbounded means that for every member of , there is a member of that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflem 8647 | . . 3 | |
2 | intexab 4610 | . . 3 | |
3 | 1, 2 | sylib 196 | . 2 |
4 | sseq2 3525 | . . . . . . . 8 | |
5 | raleq 3054 | . . . . . . . 8 | |
6 | 4, 5 | anbi12d 710 | . . . . . . 7 |
7 | 6 | anbi2d 703 | . . . . . 6 |
8 | 7 | exbidv 1714 | . . . . 5 |
9 | 8 | abbidv 2593 | . . . 4 |
10 | 9 | inteqd 4291 | . . 3 |
11 | df-cf 8343 | . . 3 | |
12 | 10, 11 | fvmptg 5954 | . 2 |
13 | 3, 12 | mpdan 668 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 |^| cint 4286 con0 4883 ` cfv 5593 ccrd 8337 ccf 8339 |
This theorem is referenced by: cfub 8650 cflm 8651 cardcf 8653 cflecard 8654 cfeq0 8657 cfsuc 8658 cff1 8659 cfflb 8660 cfval2 8661 cflim3 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-cf 8343 |
Copyright terms: Public domain | W3C validator |