![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cgsex4g | Unicode version |
Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) |
Ref | Expression |
---|---|
cgsex4g.1 | |
cgsex4g.2 |
Ref | Expression |
---|---|
cgsex4g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsex4g.2 | . . . . 5 | |
2 | 1 | biimpa 484 | . . . 4 |
3 | 2 | exlimivv 1723 | . . 3 |
4 | 3 | exlimivv 1723 | . 2 |
5 | elisset 3120 | . . . . . . . 8 | |
6 | elisset 3120 | . . . . . . . 8 | |
7 | 5, 6 | anim12i 566 | . . . . . . 7 |
8 | eeanv 1988 | . . . . . . 7 | |
9 | 7, 8 | sylibr 212 | . . . . . 6 |
10 | elisset 3120 | . . . . . . . 8 | |
11 | elisset 3120 | . . . . . . . 8 | |
12 | 10, 11 | anim12i 566 | . . . . . . 7 |
13 | eeanv 1988 | . . . . . . 7 | |
14 | 12, 13 | sylibr 212 | . . . . . 6 |
15 | 9, 14 | anim12i 566 | . . . . 5 |
16 | ee4anv 1990 | . . . . 5 | |
17 | 15, 16 | sylibr 212 | . . . 4 |
18 | cgsex4g.1 | . . . . . 6 | |
19 | 18 | 2eximi 1657 | . . . . 5 |
20 | 19 | 2eximi 1657 | . . . 4 |
21 | 17, 20 | syl 16 | . . 3 |
22 | 1 | biimprcd 225 | . . . . . 6 |
23 | 22 | ancld 553 | . . . . 5 |
24 | 23 | 2eximdv 1712 | . . . 4 |
25 | 24 | 2eximdv 1712 | . . 3 |
26 | 21, 25 | syl5com 30 | . 2 |
27 | 4, 26 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 |
This theorem is referenced by: copsex4g 4741 brecop 7423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |